
1

ANALYZING C-TEST DATA IN WINSTEPS

Todd H. McKay and Young A Son

1. Welcome! The purpose of this guide is to walk you through setting up and analyzing your C-test data.

Along the way, we will discuss aspects of both theory and practice that will (hopefully) help you support

ways to interpret your C-test data and justify particular uses of your C-test as an assessment tool.

First, we must give credit where credit is due. This how-to guide was inspired (both conceptually and

aesthetically) by the creator of Winsteps and educational measurement expert, Mike Linacre. Mike is

not only a Jedi master of measurement but is generally one of the most helpful people we have ever

encountered in our academic careers. So, while this guide is meant to help analyze C-test data, for more

in-depth coverage of Winsteps, including other data it can be used to analyze, visit the Winsteps website

at www.winsteps.com. Homage paid, we now turn to the matter at hand: the C-test guide.

By the end of this guide (provided you read through it carefully and did not doze off [incidentally, we

wouldn’t blame you]), you will be able to do the following:

• Download and install a version of Winsteps on your computer. (#2)

• Prepare your C-test data in Excel for analysis in Winsteps. (#10)

• Import data to Winsteps by creating a “control file” (more about what this is later). (#14)

• Check assumptions for both rating-scale and partial credit models. (#62)

• Analyzing C-test data-Part 1 (#77)

• What is this ‘fit’ business? (#83)

• Analyzing C-test data-Part 2 (#109)

• A possibility for placement or screening (#215)

2. Downloading and Installing Ministep

3. To get started, let’s begin by downloading the software we

will need to analyze C-test data. You may notice that the

title of this guide is “Analyzing C-test Data in Winsteps.”

However, we are going to be analyzing data using the free

version of Winsteps, which is Ministep (Linacre, 2016).

With Ministep, we can analyze up to 60 cases, or data

from 60 test takers. The full version is a great deal at only

$149 for life (plus updates, a user manual, etc.).

Nowadays, with some software packages costing upwards

of $500 for a year, this is a steal.

Copy and paste or enter the following link into your

browser:

www.winsteps.com

Scroll down to the yellow box (beneath Mike on the

bridge) and click on “MINISTEP.”

http://www.winsteps.com/
http://www.winsteps.com/

2

4. In the page that opens up, you’ll notice that you have two

download options, “Ministep: Standard Download” and

“Ministep: Secure Download.”

We’ll assume you want to be as safe as possible. Click on

“Ministep: Secure Download.”

5. A window will pop up, prompting you to download a file

called “MinistepInstall.exe.”

Save the file wherever you like. I usually save installation

files on my desktop for quick access.

Click on “Save.”

6. Navigate to where you saved the installation file and

double-click on it to begin the installation process.

A Ministep setup window should open in your browser.

In the “Install Ministep (Winsteps) to:” field, feel free to

click “Change” to change the installation path.

Click “Next.”

7. Another window will appear, asking you where you would

like the Ministep shortcut folder installed.

Click “Next.”

The installation process begins and should only take a few

seconds to complete.

3

8. Another window pops up, stating “Installation

Successful” (what a relief!).

Click on “Finish” to end the installation process.

9. Ministep then opens automatically on your computer.

We will come back to Ministep after we have set up our

C-test data in Excel for analysis.

For now, close Ministep.

10. Preparing your C-test Data in Excel

11. Your spreadsheet containing the scores of C-test test

takers should have several columns, including one for

participant ID numbers, one column for each C-test text,

and columns for any other variables of interest.

To give you an example, copy and paste or type the

following link into your browser:

https://sites.google.com/site/toddhavilandmckay/

This is a personal website that I use to store and share data.

Click on “My Data” tab in the horizontal navigation bar.

12. Scroll to the bottom of the “My Data” page. Under the

“Analyzing C-test data in Winsteps: A practical how-to

guide” section, click on the white “spreadsheet

example.”

This will open a spreadsheet containing data from the

Bangla C-test.

Download and open the spreadsheet.

https://sites.google.com/site/toddhavilandmckay/

4

13. The spreadsheet you open should like the one in the image

to the right.

Green box: The values in this column are the ID numbers

of the test takers. For the Bangla C-test, there were 35 test

takers. One test taker (#2) was removed before analysis.

Red box: These two columns contain additional variables

that we may want to look at later; they were interesting to

the developers of the Bangla C-test. The “Sems” column

indicates the semester of study of a test taker. For

example, if a student was in her fourth semester of Bangla

study, the value is “L-(4).” In the Bangla programs from

which test takers were recruited, there were many

‘beginning-level’ students but few ‘advanced’ ones. The

“SA” column contains test takers’ self-assessment ratings.

Test takers were asked to indicate, on a scale of 1–5 (1 =

horrendous, 5 = absolutely amazing), their proficiency

across the four skills in addition to an “Overall” self-

assessment rating. Values in the “SA” column contain the

“Overall” rating.

Purple box: These are the total scores for each test taker

for each text. Here, there are ten texts. Texts 2 (T2), 8

(T8), and 13 (T13) were eliminated from further

development in an earlier piloting phase wherein texts

were given to native Bangla speakers—hence ten texts,

T1–T12. Each column contains the total scores for test

takers out of 25. Recall that each C-test text has 25 blanks.

Test taker #17 correctly restored 17/25 blanks on text 6;

hence #17’s score on T6 = 17. You’ll also notice that when

a test taker did not attempt to complete a text at all (maybe

they ran out of time, had an emergency, or simply could

not restore blanks), no score was recorded. Rasch analysis

is very robust against missing data; leave missing scores

blank unless you have good reason to score them 0.

14. Import Data to Winsteps

15. Next, we are going to import data from the Excel

spreadsheet into Winsteps for analysis.

If you would like to continue using your own data, feel

free to follow along using your own spreadsheet of C-test

data.

For now, we are done with the Excel spreadsheet. Click

“X” to close the spreadsheet.

5

16. Open Ministep.

In the Ministep window that opens, click on “Excel

/RSSST.”

17. A small window pops up with many differently colored

buttons, showing us the many different ways that we can

import data into Winsteps for analysis.

Click on the green “Excel” button.

18. Another window pops up, called “Excel Input for

Winsteps.”

Click on the “Select Excel file” in the top left.

19. In the window that pops up, navigate to wherever you

saved the “C-test guide (10 texts)” spreadsheet or

wherever you have your own spreadsheet.

Click “Open.”

Back in the Excel input window, Winsteps populates the

window with information from the columns in the

spreadsheet. You can see there is an “A; ID (1)” label for

the ID column in the spreadsheet, labels for the “Sems”

(B; Sems (L-(1)) and “SA” (C; SA (S-(1)) columns, and

labels for text columns (T1–T12). The numbers and values

in parentheses remind us what the data are in those

columns; these values come from the first row of data in

the spreadsheet. At this point, everything looks okay.

6

20. You’ll notice three rows of red text in the

Excel input window: “! Item Response

Variables,” “! Person Label Variables,”

and “! Other Variables.” All of our data

are beneath the “! Other Variables” line,

but we’ll move them around so that

Winsteps knows which labels

correspond to items and which

corresponds to the test takers.

Green: Copy and paste the ID label (A;

ID (1)) from “! Other Variables” beneath

the “! Person Label Variables” line.

Red: Copy and paste all item labels from

“! Other Variables” beneath the “! Item

Variables” line.

21. Winsteps uses what are called “control files,” which are

text (.txt) files, to run analyses.

Click on the green “Construct Winsteps file” button at

the top of the Excel input window.

22. A window opens up asking us where we would like to save

the control file that we are creating from the Excel data.

Let’s call the control file “Bangla C-test.” Type “Bangla

C-test” into the “File name:” field.

Click “Save.”

7

23. A text file opens in Notepad containing a whole bunch of

information. When I opened my first ever control file (like

the one we have open here), I was slightly overwhelmed

by the information shown and what it all meant. However,

it’s all fairly straightforward. Let’s break it down.

Green box: The “Title =” shows us the title of the Excel

spreadsheet from which we created the current control

file. This is indeed the title!

Rex box: In the first line is listed the date we created the

control file. “Sheet 1” is the sheet from the Excel

spreadsheet; we only had one data sheet, and so “Sheet 1”

is what appears. “Excel Cases processed =” shows us how

many rows of data (test-taker data) there are in the file; for

Bangla, there were 35 test takers, and so the “35” is what

we expect. The “Excel Variables processed =” tells us

how many columns of data were grabbed from the Excel

spreadsheet; we had 13 columns (one for IDs, one for

Sems, one for SA, and ten text columns). This looks great.

24. The next set of labels are specifications that tell Winsteps

more about the data being analyzed. Note that I added

spaces to make the file visually easier to parse.

Green box: The “NI =” means ‘number of items’ or

questions. There are ten texts or super-items in the Bangla

C-test, so NI = 10 is correct.

Red box: The “CODES =” refers to the possible values for

scores on an item or question. Because each Bangla text is

scored out of 25, possible codes or scores are 0–25.

However, no test taker scored 25/25 on a text; the highest

score was 24/25. Thus, codes are from 0–24. Missing data

were left blank in the Excel spreadsheet, so there is a blank

space after the last value of 24. We will discuss missing

data later.

Notice that explanations for each specification (ITEM1=,

NI=, NAME1=, etc.) are provided after the semicolon.

Linacre (in his usual helpful fashion) adds this

information to all control files that are created.

To understand what some of the other specifications are,

we will have to look at our data in a different way.

8

25. Close the “Bangla C-test.txt” control file.

26. Close the “Excel Input for Winsteps” window.

27. Let’s open the data in Ministep as though we are going to

begin the analysis.

To open a control file in Ministep, drag and drop the

control file over the Ministep desktop shortcut.

28. Alternatively, double click on the Ministep shortcut icon

to open Ministep.

Click “File.”

9

29. Click “Open File.”

30. Select the “Bangla C-test.txt” file (wherever you have that

saved).

Click “Open.”

31. In the Ministep window that opens, click “Data Setup” in

the top right.

32. The “Ministep Control File Set-Up” window appears on

the screen.

There are several ways to open data in Ministep. You can

import data from Excel, SPSS, SAS, R, etc. (like we did

with the Excel spreadsheet) to create a control file for the

analysis, but we can also manually enter data in this nice

interface and then export the data to a control file.

Opening data in this way can serve as a nice check to make

sure that the information in the control file looks right.

Red box: Look at that! Some of those funky specification

lines that we saw in the text file also appear here. With the

spreadsheet of data right below these specifications, we

are in a better place to examine them and see what they

mean. Let’s look at these now.

10

33. Green box: “TITLE=” This line shows

the title of the Excel spreadsheet we

pulled data from; this is the same as the

information in the text file we looked

at and looks okay.

Red box: “PERSON=” We can call the

people whose scores we are going to

analyze whatever we want. We can

also change what we call the items

(“ITEM=”). Let’s leave these as

“Person and

34. Red box: “NAMELEN=” tells us how

many cells are needed for the test-taker

ID #s. You need one cell per digit. So,

if you have 125 participants, you need

3 cells (NAMELEN=3). Here, we have

3 specified even though there are only

35 test takers (2 cells needed).

Green box: The 35 in this field means

we have a total of 35 cases (test takers)

or 35 rows of data.

Purple box: The 24 in this field means

we have a total of 24 columns in the

spreadsheet on the screen. The box

outlines columns 1–24.

35. Red box: These three specifications tell

Ministep more about the items or texts

in the spreadsheet. “ITEM1=1” means

that the first item starts in column 1.

Ministep can then grab the remaining

items because it knows items start in

the first column. “NI=10” means we

have 10 items in total, which we do.

“XWIDE=2” means we need two cells

for items because scores on texts are

anywhere from 1 (1 cell) to 25 (2 cells).

We need one cell per digit.

11

36. Red box: The “CODES=Valid codes” field contains the

possible scores for C-test texts. If you click the green

“Scan data for codes” button, Ministep will do a quick

scan of the values in the white part of the spreadsheet to

see what the scores are.

Click the green “Category labels CLFILE=” button.

37. A window pops up, which contains more information

about the scores or codes in the Bangla C-test.

Do not worry about “ISGROUPS=” for now; this

specification tells Ministep whether we want all texts to

have the same, 0–25 scale (RSM) or to allow texts to be

there own scales (more on this later).

The “CODES=” column contains the range of C-test

scores. As we noted earlier, the highest score on any one

Bangla text was 24/25, so there is no 25 in this column.

The final “ ” is blank because missing scores were left as

blank cells in the Excel spreadsheet.

In the “Category label” column, we can add a label to each

score or code. This could be useful if you are analyzing

scores from Likert items, where a “1” = ‘strongly

disagree’ and a “5” = ‘strongly agree,’ for example. In this

case, we could type “strongly disagree,” “slightly

disagree,” “neither agree nor disagree,” etc. in the red cell

that corresponds to the value. We don’t want to assign a

label to each C-test blank, so we leave these red cells

blank.

Click “Category Labels OK.”

38. Now that we have a better sense of what those

specifications that we saw in the .txt control file are about,

let’s go ahead and close the “Data Setup” window and

return to the text file.

Close the “Ministep Control File Set-Up.”

12

39. Navigate to the “Bangla C-test.txt” file.

Drag and drop the file on the Ministep desktop icon to

open it.

We can double-click the .txt file to open it, but let’s open

it another way (so that you know your options).

40. Click “File” in the top left.

Click “Edit Control File=....”

41. We’re now back in the control file we started with.

Now, however, the different specifications (ITEM=, NI=,

NAME1=, etc.) should make more sense to you.

Additional commentary is added after the “;” in each line.

Recall that Ministep ignores anything after a semicolon.

The one specification that we did not see in the nice “Data

Setup” page was “TOTALSCORE=."

42. Let’s look up what “TOTALSCORE=” means.

Navigate back to the main Ministep screen and click

“Help” from the menu at the top.

Click “Contents.”

43. A “WINSTEPS Help for Rasch Analysis” window pops

up. The main page displays a list of specifications or

control variables that we can add to our control file to do

different things. From this handy-dandy help menu, we

can learn to do just about anything on Ministep/Winsteps.

We search for “TOTALSCORE=” by typing this in the

search field at the top, or we can scroll down to it page.

Scroll down to “TOTALSCORE=” and click on it.

13

44. From the screen that pops up, we can read more about this

control variable or specification.

With TOTALSCORE=Yes specified in the control file,

we get reports on all C-test texts, regardless of whether or

not they are ‘extreme.’ Extreme scores can do funky

things to analyses. With TOTALSCORE=Yes, we can get

reports on our data with and without potentially pesky

extreme test takers and texts.

Close the help menu.

45. Pull up the control file again.

Red box: The “@ID =” line tells Ministep where test

takers’ IDs are in the data set. They are in column 22

(C22) and are two columns wide (W2).

Green box: The information between “&END” and “END

NAMES” is about our C-test texts or items. The first text,

which we called “T1,” is “Item 1” and is in columns “1-

2.” The last text is “T12,” “Item 10,” and is in columns

“19-20” in the Data Setup page.

Blue box: These are the actual data for the analysis,

followed by the test taker ID numbers. Each row

corresponds to one test taker. For example, the first test

taker “1” scored a 10 on T1, a 4 on T3, (note that a blank

is added before the value if we specified that the data are

two columns wide but the value is one digit), a 16 on T4,

and so on.

That covers just about all the variables and specifications

in the control file! We covered one way (the quick way)

of readying the control file for analysis in Ministep, but

remember that you can also create a control file by

manually entering data in the “Data Setup” interface.

Also, once you get better at Ministep and IRT, you can

create control files by typing directly into a text document.

We think the more IRT-proficient you become, the easier

it will be to make changes directly into the text file.

14

46. Before closing the control file, two things:

First, we will talk more about the “GROUPS=” equals

variable later on. For now, remember that “GROUPS=0”

means “Hey, Ministep! Run the partial credit model!”

This allows texts to create their own rating structure.

Again, more on this to come. But, by adding a semicolon

before this variable, we are telling Ministep to ignore this

variable. Ministep thus ignores the “GROUPS=0”

variable and runs the rating-scale model.

Second, we want to tell Ministep how to treat missing

data. Let’s take a look at our options (options are nice).

Return to the Ministep screen.

Click on “Help” and then “Contents.”

47. In the “Index of Control Variables” page, scroll down to

“MISSCORE=.”

Click on the “MISSCORE=” link.

48. Take a moment to read up on how to treat missing data.

(These help screens are pure gold and taught me half of

what I know about IRT. Thanks, Mike!)

We have a couple options for how we can treat our

missing data. We have two options that are viable for the

Bangla C-test data. We can either enter “MISSCORE = 0”

and tell Ministep to treat missing data as 0’s, or we can

enter “MISSCORE = -1” and tell Ministep to ignore

missing data and trudge on with the analysis without it.

At this point, you might want to think back on how you

decided to score responses to C-test texts. Deciding how

to score C-test data can be a tricky affair, for we often

don’t know if a blank is blank because the test taker didn’t

know the word or because they didn’t even try to restore

the word (i.e., they ran out of time, they got lazy and

skipped around, etc.). In the case of Bangla, a whole text

was treated as missing if the test taker did not try to

complete any blanks in a text. If a test taker tried to

complete a few blanks, but they were all wrong, the text

was scored 0. Because scores are summed across texts to

create super-items for C-tests, it doesn’t matter how you

score individual blanks. If a test taker gets 2/25 blanks

15

correct, the total score is 2/25 regardless of whether or not

the other blanks were wrong or missing.

Because we scored Bangla C-test texts in the manner

above, let’s return to the control file to enter in a few more

specifications.

Close the help window.

49. Navigate back to the control file.

Add “MISSCORE = -1” to the list of variables to tell

Ministep to ignore missing data.

Also, to make reading the output easier, enter “PERSON

= Student” (to report participants as “Students” in the

output) and “ITEM = Text” (to report items as texts).

50. Click “File” and then “Save” to save changes to the

control file.

51. We are now ready to run the analysis!

Close the control file.

52. Open Ministep if you closed it.

On the main Ministep page, click “File” and then “Open

File.”

53. Select the “Bangla C-test.txt” file (wherever you have that

saved.”

Click “Open.”

16

54. “Report output file name.”

Press “Enter.”

“Extra specifications:” We can add any addition variables

here before running the analysis (e.g., ITEM=,

MISSCORE=, etc.) There are two places we can add

specifications. I find these places to be particularly useful

for removing items and people from the analysis once we

determine who/what to remove.

Press “Enter.”

And, we’re off!

55. A whole bunch of text appears in the Ministep analysis

window, ending in a table of very useful information.

Scroll back to the top of the screen so that we can go

through the output bit by bit.

Red box: This information is key and is the first place we

stop to make sure the analysis went okay. The string of

text that reads “10 416 91713 8 11 2 1” is an example

row of data (from the matrix of data at the end of the

control file). The ^I indicates where the text scores

begin, and the ̂ N shows us where the scores end. The ̂ P

shows us where the labels for test takers (ID numbers)

begin. Our first person was “ 1.” There is a blank because

the first cell in the two-cell column of test-taker labels is

blank.

Green box: Ministep performs the analysis multiple

times on the data, each time becoming more and more

accurate; it does a number of iterations of the analysis

until the accuracy reaches a certain level. The values in

“PROX ITERATION” mean “analysis round 1,”

“analysis round 2,” and so on. The 35 in the “Student”

column means data from 35 students were analyzed, and

the 10 in the “Text” column means 10 texts were

analyzed. Each text has 25 blanks or categories, hence

“CATS” are 25.

The “Probing data connection” line is useful when we

are analyzing multiple data sets, consisting of multiple

files, and we tell Ministep to analyze the lot of them.

Here, we are not connecting any datasets, though, so we

can skip this line.

17

56. Rasch analysis uses a process called joint maximum

likelihood estimation (JMLE) to determine scores for

students and the texts that make up the Bangla C-test.

What this means is that Rasch sifts through the data and

tries to determine patterns it can use to predict students’

scores and text difficulty values. It analyzes the data

again and again until it can predict fairly accurately.

Therefore, you’ll notice that the values in this table

become smaller and smaller and smaller. (For those so

inclined, Rasch is a special type of regression model,

wherein the slope of the regression equation is either

constrained to 1 or is an estimate of the population

variance, a2. This is what allows for the ‘specific

objectivity’ in the Rasch philosophy because slope

estimates are all the same and only intercept differ.)

57. The table that appears at the end of the analysis provides

a summary of the student and text measures. The neat

thing about IRT is that it tells you how students compare

with one another in terms of language ability (or some

other construct) and how difficult texts (or other items)

are relative to one another. Student ability and text

difficulty are referred to as “measures.” This information

is contained in Table 0.

Red box: The analysis took 1.892 seconds on my laptop!

With this small data set, the analysis shouldn’t take too

long. However, we’ll see that it takes longer and longer

when we start to make modifications to our analysis.

Green box: The top half of Table 0 displays a summary

of the analysis for Students.

Blue box: The bottom half of Table 0 shows a summary

of the analysis for Texts.

Purple box: This last bit of the analysis shows us the path

where Ministep wrote an output text file of the analysis.

It also shows us the codes or scores, again, that were in

the data.

We’ll come back to this table later. Let’s check out a few

nifty graphs.

18

58. In the main Ministep page, click on “Output Tables.”

Click on “12. Text: map.”

59. This is by far one of the coolest maps you will ever see

in your life (tattoo possibilities abound). This is what is

called a Wright map (named after Ben Wright, another

measurement guru) or variable map. It shows us the

distribution of students by their ability levels and the

distribution of texts according to how difficult they are!

What does this mean? Well, suppose you have two

English users for whom English is not their first

language: one is a first-semester English learner, and the

other is a professor of English literature who translates

English literary classics into Hindi/Urdu. Also suppose

we have two C-test texts: one taken from a first-grade

textbook, and the other is a clipping from the Baltimore

Sun (a newspaper). If both scored 24/25 on the textbook

text, we would not know who the more ‘able’ English

user is; we would think, “They both got 24/25, so they’re

equally ‘able’ English users.” However, by adding the

newspaper clipping, we can see that the student got a

high score on the textbook text and a low score on the

newspaper one. We can also see that the professor got a

higher score on both. With this information, we can

determine that the newspaper text is more difficult than

the textbook one, and the student is less ‘able’ than the

professor (all other things being equal). We can also see

how the texts and our two test takers compare on the

same scale!

On the left, in the “MEASURE” column, are the

measures for both students and texts (they’re on the same

scale). This is just like a ruler. Rasch analysis takes the

data and transforms it into what are called “logits.”

Logits are neat because the distance between logits -1

and 0 is the same as the distance between 0 and 1. This

is a crucial difference between Rasch analysis with IRT

and just using percentages. For the above example with

our textbook and newspaper texts and two English users,

19

if we give a total score on texts using percentages, we

cannot say that a score difference of 0 and 5% is the same

as the difference from 95-100%. To use a non-language

example, imagine we have three math problems on a test:

(1) 1+1, (2) 6 x 3, and (3) log224 – log23 = log5x.

Someone might get (1) and (2) (66%), and another

person might get all three (100%). But, given the

different difficulties of the three math problems can we

say that the percent difference between 1 and 2 is the

same as 2 and 3? If someone answers (1) and (3)

correctly (66%), are they as good at math as someone

who gets (1) and (2) correct (also 66%)? Probably not!

60. We now know what the values are in the “MEASURE”

column; these are the measures (for the students and

texts), transformed into logits. Each X represents one

student, and the T1, T3, T11, etc. are the texts. The map

is oriented such that the more proficient Bangla students

are towards the top and the less proficient students are

towards the bottom. Also, for texts, more difficult texts

are towards the top, and easier ones are near the bottom.

Red box: For these two students, T6 is right at their

ability level. When students and texts line up like this on

the map, there is good ‘targeting,’ which means we have

goodly amounts of statistical information that can be

used to calculate the positions of the students and the

texts. Thus, good targeting equals less error.

Think of targeting like a two-way faucet. If we turn the

faucet on and place a cup right beneath it, we get more

water in the cup. However, if the faucet and cup aren’t

lined up (maybe it’s early in the morning), some water

might miss the cup and end up in the sink. Bad targeting

is when you turn the water on and then remember to get

a cup from the cupboard. In this analogy, the water is the

statistical information. The better the targeting, the more

water in the cup that we can use to determine who is

more ‘able’ and which text is more difficult.

Blue box: There are no items that are close to these

students. We are therefore less sure of their positions

with respect to each other, and they will have larger

standard errors; this is good motivation to maybe try to

incorporate an easier text into the C-test in the future.

Green box: We have multiple texts at the same level of

difficulty, so, if our goal is to eliminate five texts to

create a five-text C-test, we may choose to eliminate a

?

20

few from this group. However, also note that there is

only student at the level of these texts; this means we

don’t have much statistical information from the student

to tell us about these texts. We are trying to use one

faucet to fill several cups at the same time.

Lastly, note that the group of students on the whole

seems to be a bit below the group of texts; this is a sign

the texts were relatively difficult on the whole for the

group of students. Because many of the Bangla students

in this group are low-level learners, this makes sense.

Also, students’ scores or measures range from about -1.6

to 1.2 logits (more on this in a bit).

61. Close the Wright map.

62. Checking Assumptions

63. In the same way that we would check to make sure certain assumptions are met before performing any

inferential statistics, we should also check to make sure that certain assumptions are met during our Rasch

analysis of the Bangla C-test data. There are three assumptions to remember when analyzing C-test data.

First, data should be independent (this should be familiar to you if you have background in statistics).

Because a student’s response on one C-test blank can influence their responses on other blanks, C-test

data are not independent. The same can be said for cloze tests. To get around this problem, we treat each

C-test text as a super-item; we add up the scores of individual blanks to get a total score for each text.

Therefore, treated as super-items, C-test texts are independent. There is some degree of dependency, but

researchers have shown the amount is not too terribly problematic (see Schroeders, Robitzsch, &

Schipolowski, 2014).

Second, performing a Rasch analysis is like performing a one-factor factor analysis. We want to see that

all the items we are analyzing are measuring the same construct (unidimensionality); in the case of the

Bangla C-test, we want to assess the degree to texts are measuring Bangla language proficiency.

Third, an increase in scores on the C-test should parallel an increasing in Bangla language proficiency.

In other words, thinking back on the Wright map, the greater the score, the higher up the Wright map we

expect students to be. The lower the score, the lower down on the Wright map the student should be, and

so on.

Let’s have a look at these assumptions for the Bangla C-test that we are analyzing using RSM.

21

64. On the main Ministep screen, click “Diagnosis” and then

click on “A. Item Polarity (Table 26).”

65. Red box: This is the reference number for the text in the

analysis. If the text labels in the Excel spreadsheet are

ordered 1–10, then the entry number and text number

will be the same. In our case, the Bangla C-test is missing

texts 2 and 8, so the entry number and the text number

will be offset a bit. We will refer to these values when

removing students or texts from the analysis.

Green box: These are the total scores and counts for each

text. Scores are high because each text has a possible

score of 25, and there are 10 texts. Total scores are

highest for text number 5 and lowest for text number 10.

Blue box: This is the ‘score’ that the text receives.

Remember that Rasch gives us the score for students and

texts! The lower the score, or “Measure,” the lower down

on the Wright map, and the higher the measure, the

higher up on the Wright map. Text number 5, our easier

text, is lower down with a measure of -.72, and text

numbers 1 and 10 are more difficulty (higher up the

map), with measures of .39 and .37. These values

correspond to texts’ positions on the Wright map above.

Purple box: These are the standard errors (SEs) for each

text. We want these to be low. Here, all SE values are

low, which is good news for our texts.

66. Red box: We will talk more about Infit and

Outfit statistics later when we talk about fit.

Green box: This is the first assumption we want

to check. We want to make sure all texts are

measuring the same thing. All point-measure

correlations (PTMEASUR-AL) should be

positive. A negative correlation would mean a

text is not measuring what the others are and

could mean that an item was coded in the

wrong dimension (if you’re working with a

Likert scale, for example) or that there was a

data-entry problem. All these are positive,

Blue boxes: Blue boxes indicate two texts, T1 and T5,

for which responses were better than the model

expected.

22

which is great. The observed correlation,

“CORR,” should not be too different from the

expected correlation, “EXP.” Big gaps between

observed and expected values are signs that the

data are not fitting the Rasch model properly.

The “EXACT OBS%” is the percentage of

scores that are within 0.5 points of the expected

scores. The “MATCH EXP%” is the

percentage of scores predicted to be within 0.5

points.

67. Scroll down to Table 26.3. This table gives us

a look at how the group of students performed

on individual blanks for individual C-test texts.

This is where we will check the assumption that

an increase in scores corresponds to an increase

in ability.

The image to the right is for the text whose

entry number is 7 but is T9 in the Excel column.

Red box: The “DATA CODE” and “SCORE

VALUE” columns go from a blank to 21. The

highest score on this text was 21. Note that

there are several missing values. No student

scored 12, 13, or 14 on this text. The “SCORE

VALUE” is the value, meaning someone who

got 21/25 was given a score of 21. There were

several missing scores, too, which are indicated

in the “SCORE VALUE” column by “***.”

Green box: The “DATA COUNT” and “%”

columns show the number of students were

received a particular score on a text. For

instance, 5 students did not attempt this text

(“***”), 6 students got a score of 5/25, and only

1 student got a score of 21/25. The “%” is the

proportion of students who received that score.

Because 5 students did not attempt the text, this

proportion is out of 30.

Blue boxes: This is where things can get a bit hairy

when analyzing the data from a small sample of test

takers with Rasch. Ideally, we should have 10

responses for each response category when analyzing

data with PCM. If our texts have 25 categories (25

blanks), then we should have in the neighborhood of

250 responses for the best possible PCM analysis. Our

Bangla C-test sample size (n = 35) is nowhere near this

number. For RSM, which we are doing here, we can

have less than 10 responses per category, but, for both

RSM and PCM, fewer responses mean less information

to determine test and student parameters. “Parameters”

in Rasch refers to the discrimination ability of texts and

students and the positions of texts and students relative

to other texts and students.

23

68. Red box: These are the students’

scores or the student ability measures

(“ABILITY MEAN”). As the scores

from the “SCORE VALUE” column

go up, we expect students’ ability

measures to go up. Recall that a

negative measure means lower down

on the map and a positive value means

higher up on the map (i.e., more

ability). Students who scored 1/25

have a measure of -.59, and the one

who scored 21/25 has a measure of

1.17. So far, so good! However, when

a nice progression does not happen, we

get the “*’s.” These mean, “Wait… A

student who got a score of 20/25 has a

lower ability measure than a student

who got 18/25?”

A nice progression is expected by the Rasch model—our

second assumption. The model’s ability to determine how

students stack up is a function of how many students we have

in the analysis to make this determination. With few students,

we get some disordering! Not great news, but we’ll see how

things work out. All texts have some disordering.

69. Close out of “A. Item Polarity (Table 26).”

70. Instead of looking at whether an increase in scores

matched up with an increase in student ability for each

individual text, let’s look at scores across all texts.

On the main “Ministep” page, click on “Diagnosis” and

then click on “C. Category Function (Table 3.2+).”

24

71. In table 3.2, we can look at scores on the whole

and how they compare to the range of student

ability.

Red box: Notice again how scores go from 0–

24.

Green box: We have a lot more students scoring

in the 1–11/25 range on the Bangla C-test

overall, which is not surprising given the

number of low-level learners.

Blue box: Note that the ability measures range

from -1.15 to 1.57. There are four disordered

categories (*’s) across our 0-24 scale.

Purple boxes: These disordered categories have

fewer responses. Recall that about 10 per

category is ideal for getting the student ordering

right. For “CATEGORY LABEL 1,” despite 22

responses for this category, the * is likely due to

those 7 students who scored 0/25; we probably

assigned scores of 0/25 on several texts for

students who simply ran out of time on a given

text (or for whatever other reason), resulting in

the disordering we see here.

The overall parallel between scores and

students’ ability measures looks good!

The “ANDRICH THRESHOLD” is an important

concept when analyzing rating-scale data that we

conveniently gloss over when analyzing C-test data.

The values in this column are the point at which—in

terms of student ability—students have a 50% chance

of endorsing a higher or lower category. For 5-point

Likert items, say, it can be very nice to know how

respondents will endorse an item given a certain

amount of a construct of interest. Because C-tests

have 25 categories, knowing at which point a student

is 50% likely to score 11/25 versus 12/25 is less

useful, particularly when analyzing data with small

samples of students. This is undoubtedly an area of

contention when using Rasch to analyze C-test data,

and one we readily recognize.

72. Close table 3.2.

73. So far, to address the third assumption, we have been

looking at a lot of tables. Let’s take a look at one more

chart to better understand what we mean by increase in

scores corresponds to increase in measures.

On the main “Ministep” page, click on “Diagnosis” at

the top and then “B. Empirical Item-Category

Measures (Table 2.6).”

25

74. Table 2.6 is similar to the Wright map in

some ways. Running left to right, we have

the logit scale. Each text has one row of

values. Text numbers and their entry

numbers (“NUM”) are shown on the right-

hand side of the map.

Red box: Ideally, we have something like

this. Scores are nicely aligned such that

lower values are to the left (lower down on

the logit scale) and higher scores are to the

right. Values here are “5, 6, 8, 9, 10, 11,

12, 14, 17, 20, and 22.” In other words,

completing more blanks corresponds to a

higher score on the logit scale. Fewer

blanks corresponds with lower logit

scores.

Blue box: Text 10 (T10) has some

disordered blanks. The disordering, as we

saw above, is probably due to the fact that

we had too few test takers who were able

to complete the number of blanks

indicated by the disordered categories.

The fact that they are not too disordered,

however, is a good sign!

Green box: The top row of numbers represent our Bangla

test takers. In the second row, “M” stands for ‘mean,’ and

“S” and “T” indicate 1 and 2 standard deviations from mean

“M.” If we draw a dashed line at roughly the mean of the

text scores (Ministep anchors the overall text difficulty at 0

logits), most test takers appear below this line. Again, this

makes sense, knowing that the test-taker sample has a lot of

low-level learners.

75. We’ve looked at a lot of tables so far. Let’s do a quick recap of for checking assumptions.

(1) Independence of data: This is addressed by treating C-test texts as super-items. Research shows there

is still some dependency in C-test texts, but the amount does not mess with the analysis too much.

(2) Dimensionality: Check to make sure all texts have positive point-measure correlations and keep an

eye out for (a) negative correlations and (b) big gaps between observed and expected values. By

eliminating some misfitting students and texts (this is coming up shortly), values in (b) may improve. If

you have negative correlations, check how the item was scored, if there was a data entry error, or consider

eliminating. We will discuss how to remove the item from the analysis in Ministep shortly.

(3) Increase in scores = increase in measures: Look at the category frequencies in tables 26.3 and table

3.2 as well as the observed average measures in table 2.6. You should see a parallel between increasing

scores and measures. Depending on the size of your dataset, you will likely have more or less disordered

categories (marked by *’s).

26

76. Close table 2.6.

77. Analyzing C-test Data-Part 1

78. Now that we’ve looked at the assumptions for analyzing data with the rating-scale model (RSM), let’s

start to analyze some data. You may have noted that, at the beginning of this practical guide, I said we

were going to analyze our C-test data with both RSM and the partial credit model (PCM), and we will!

As we go through the analysis, we will hop back and forth between RSM and PCM analyses so that we

can see—in action—what’s different between the two models.

79. Let’s start by looking at the overall model fit of the

Bangla C-test with ten texts before removing five texts

to optimize the test.

In the main Ministep window, click “Output Tables”

and then click on “3.1 Summary statistics.”

Another text file opens up.

80. In the text file that opens up, you’ll see two tables. The

first table is table for the student (or person) information,

and the second table is for the text (or item) information.

This information is similar to that reported in table 0 on

the main analysis page. Let’s start by looking at the first

table with student information.

Red box: The “Total Score” is given in the first column.

The mean number of correctly restored blanks on the

Bangla C-test was 71.2. The highest score was 197.0,

and the lowest was 6.0.

Blue box: The values in the “Count” column indicate the

number of responses made. Because our items are whole

texts, these values indicate the number of texts. The

mean number of attempted texts was 8.6, the most was

10.0, and the lowest was 3.0.

27

81. Moving to the right, we have two more columns, a

“Measure” column and a “Model S.E.” column.

Red box: The average student ability measure is -.55 on

the logit scale. The high is 1.17, and the low is -1.56. If

you recall, the overall set of texts appeared to be slightly

above the group of test takers. The -.55 value confirms

our eyeballing earlier. Because texts are anchored at 0 on

the logit scale, the fact that the mean student measure is

-.55 indicates that, on the whole, our test taker sample is

slightly below the mean of the texts.

Blue box: These values are the standard errors (SEs)

associated with each measurement. For the most part,

these are on the low end, which is great. The higher .37

for the high-ability student is likely because we have few

texts at the ability level of this student. Think back on the

Wright map above. If students and texts line up on the

Wright map, we have more statistical information with

which to estimate that student’s or text’s position relative

to other students and texts on the map. We are less sure

about the high-ability student because there is no text at

his or her level. A look at the map in #60 shows a lone X

at about 1.17—and, sure enough, there is no text at the

student’s level.

82. The last two columns in table 3.1 are the model-fit

indices. These values indicate how well the overall

Rasch model is working giving the data we are

analyzing. We have here the “Infit” and “Outfit”

statistics, along with their mean square (“MNSQ”) and

standardized z-score values (“ZSTD”). Infit statistics tell

us about the extent of the misfit when a text is targeted

at a student’s ability level (i.e., they are at about the same

location on the Wright map). Outfit statistics tell us

about the extent of the misfit when a text is not targeted

at a student’s ability level (i.e., the text is above or below

the student’s location on the Wright map).

Red boxes: We expect the MNSQ values for both infit

and outfit to be about 1.0. Values < 1.0 mean there is

some redundancy in the items or dependency in the data

(overfit). Values > 1.0 mean there is noise in the data

(underfit). MNSQ values tell us how much misfit (over

or under) there is in the data.

Blue boxes: These ZSTD values tell us not how much

misfit there is but the likelihood of the misfit. Think of

these as indicating how worried you need to be about the

28

degree of misfit. We want these values to be around 0

(not worried at all), but values > 2.0 mean “Here’s a red

flag; check it out.” ZSTD values are sample-size

dependent (like p-values), however, so the more test

takers we have, the higher the ZSTD values will be.

ZSTD values are not too terribly helpful. If we have a

large enough group of test takers, ZSTD values will

always be > 2.0.

83. What is this “fit” business?

Remember that just about everything in statistics boils down to one, simple action: putting a line on a

bunch of points. How we get the line is what folks (annoyingly) call the ‘model.’ If we put a flat line on

a set of points, our model is the mean. For correlation and regression analyses, we are plotting a diagonal

line on a bunch of points. In IRT, we don’t plot a flat line or a diagonal line but an S-shaped line, also

called a “sigmoid” or an “ogive.” Also in IRT, we don’t care about the points individually but the overall

response patterns. We’ll come back to this in a moment. Let’s look at each of these in a bit more detail

to understand what we mean by model fit.

84. The Mean

First, the mean is our most basic model. Again, the mean

represents a particular line—a flat one—that we put on a

bunch of points (our data). The more snug the mean line

is on our set of data points, the better the fit.

Imagine that we want to know on average how many

presentations graduate students give per semester in the

course of their program (I always think we give too many,

so I am venting through this example). In the scatterplot

to the right, each number on the horizontal x-axis

corresponds to one graduate student. There are six

students represented here. On the vertical y-axis are

shown the number of presentations each student gives.

Student 1 gives 2 presentations per semester, student 2

gives 3, student 3 gives 5 (the nerve), student 4 gives 4,

and so on. We can add up the total number of

presentations and then divide by the number of students

to figure out the average number of presentations given

by our group of students each semester (the mean).

Using the formula to the right, we get the following:

𝑥̅ =
∑(2 + 3 + 5 + 4 + 5 + 2)

6

𝑥̅ =
21

6

The formula for the mean looks like this:

𝑥̅ =
∑ 𝑥

𝑛

The "𝑥̅" stands for ‘mean.’ The big “Σ" thing

just means ‘add up.’ The “x” represents the

values for the points on the scatterplot, and the

“n” stands for ‘the number of people.’ Put

together, this means ‘add up all the points and

divide by the number of people.’

29

𝑥̅ = 3.5

The mean (our model) is 3.5! On average, students give

3.5 presentations per semester. The mean is a model

because no one actually gives 3.5 presentations. (Well,

you might panic halfway through and stop, or you might

only finish half your content, I suppose. Your advisor

might say, “Todd, that was really only half of what I was

expecting.” You get the point.) For the data in our plot,

the mean is a good representation of the data; the model

fits.

85. Now, as you probably know (or can remember an instance

of), people freak out when there are outliers in the dataset,

particularly when the dataset is small. We were talking

about infit and outfit statistics above. Well, outliers mess

with the fit. In other words, outliers make our lines (our

models) jump around more than we want them to.

Take another look at the plot to the right. Instead of giving

2 presentations, this data tells us that student 6 gave 20

presentations. The student is either overly ambitious and

views PowerPoints as the path to enlightenment, or the

undergrad we paid to enter data into Excel messed up

somewhere in the data-entry process. We’ll reluctantly

assume the latter.

If we revisit our mean equation from above, we get the

following:

𝑥̅ =
∑(2 + 3 + 5 + 4 + 5 + 20)

6

𝑥̅ =
39

6

𝑥̅ = 6.5

Our mean is now 6.5 instead of 3.5, and we can

clearly see in the above plot that the line is well

above most of the data points. The line (our

model) doesn’t fit the data so well.

Violations like this are what prompt people to

use non-parametric statistical analyses, which

often use the mode or the median to represent

the data. The mode for our dataset above would

be 5 and the median would be 4.5 (picture the

line moving around); both the median and the

mode would represent our data better, too.

30

86. Great, so we’ve covered the mean as a model and talked

a little bit about how outliers mess things up. The next

couple of concepts to talk about are deviation, standard

deviation, and variance. I know this isn’t a stats course,

but knowing these few concepts do make what I talk

about later a bit easier to digest.

The dashed red lines indicate the different between the

observed point (the black dots) and the mean (our model).

How far each point is away from the mean is the

deviation. Student 1 only gives 2 presentations per

semester, but the average is 3.5. Therefore, the deviation

for this student from the mean is (2 – 3.5 = -1.5). Student

3 gives 5 presentations per semester, which is 1.5 more

presentations than our model 3.5 (5 – 3.5 = 1.5). We can

add up all the deviations to get the total error for our mean

model, like so:

∑(𝑥 − 𝑥̅) = (−1.5) + (−0.5) + (1.5) + (0.5) + (1.5)

+ (−1.5) = 0

So, by adding up all the deviances, we learn that our total

error for the model is 0. Now, we know this can’t be true,

because clearly the points on the plot are spread out

around the mean. The problem is that some points are

negative and some are positive and therefore add up to 0.

To get around this problem, we square all the deviances

and then add them up, getting the sum of squares (SS) or

the sum of squared errors (SSE).

Sum of Squares

SS = ∑(𝑥 − 𝑥̅)2

The above equation for SS should be fairly easy to

decipher at this point. It means subtract each point from

the mean (𝑥 − 𝑥̅), which gives you the deviation, square

them (2), and then add them up (Σ). The SS for your

mean model of student presentations is thus 9.5!

𝑆𝑆 = ∑(𝑥 − 𝑥̅)2

 = ∑(−1.5)2 + (−0.5)2 + (1.5)2 + (0.5)2

+ (1.5)2 + (−1.5)2

 = ∑(2.25) + (0.25) + (2.25) + (0.25) + (2.25)

+ (2.25)

 = 9.5!

87. The problem with SS is that it depends on how many data

points you have; the more data points or observations you

have, the larger your SS becomes. Therefore, it’s not

really a statistic that we can use to make comparisons

across models or analyses. But, we can take the average

of the SS, which is the variance. “Variance” means ‘On

Using the equation to the left, our model

variance is…

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
SS

(N − 1)
=

9.5

5
= 1.9

31

average, how much do my points vary off the mean line.’

The formula for the variance is given below.

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
SS

(N−1)
=

∑(𝑥−𝑥̅)2

(N−1)

The top half of the equation is the one for SS. The “N-1”

at the bottom is for degrees of freedom, which is the total

number of groups or datapoints minus 1. Explaining

degrees of freedom is always awkward for everyone, so

just Google it. It basically limits the number of

comparisons that you are allowed to make. We have six

students, so our degrees of freedom is df = (6 – 1) = 5.

We can now say that our average error in our

model (our mean line) is 1.9 presentations.

However, because we squared the deviations

of each point, the 1.9 really means ‘1.9

presentations squared.’ To generally avoid

having to explain what that means to anyone,

we take the square root of the variance, which

gives us the standard deviation (SD).

𝑆𝐷 =
SS

(N − 1)
=

9.5

5
= 1.38

88. Most statistics boils down to putting a line or lines on points. The ‘model’ is an equation that gives us a

line that we can then put on our points. The most basic model is the mean. How well our model fits the

data points is what we call “model fit.” How far an observed value or data point strays or varies from the

mean is called a deviation. We can’t add up all the deviations to get a sense of the ‘average deviation’

because deviations are usually both positive and negative. To get around this issue, we square all the

points and then add them up, giving us the sum of squares (SS) or sum of squared errors (SSE). The

average of the SS is the variance. The problem with variance is that it is in squared units. To get around

this issue, we take the square root of the variance, which gives us the standard deviation (SD). Outliers

make the line (our model) jump around, affecting the fit, so we don’t like them.

89. Correlation and Regression

Let’s move on from our mean as the model of interest and look at a regression model. Recall that, in

regression, we are not plotting a flat line on the data but a diagonal one. Again, things like “regression”

and “logistic regression” still boil down to one thing: putting a line on points (don’t let yourself get overly

bogged down in the jargon); our line is just a diagonal one. We are talking about mean and regression as

models because knowing what’s happening with them will make understanding IRT models a bit easier,

and Rasch is a type of logistic regression.

90. In the graph to the right, we have yet another model—a

regression model (the diagonal line). In regression, we are

interested in making predictions. Let’s take an example.

The more time I spend in Bangladesh, both the better my

Bangla becomes (more or less) and the more Bangladeshi

food I eat. Bangladeshi food, like most subcontinent food,

is very spicy. So, as a researcher and test developer, I

think, “Maybe there is a relationship between spice

tolerance and scores on a Bangla proficiency test. Just

maybe, the more spice-tolerant a Bangla learner is, the

better they score on a Bangla test.” I therefore predict that

higher spice tolerance corresponds to higher Bangla

scores.

In the graph to the right, my x-axis or predictor variable

is “SpiceTolerance” (measured in number of peppers a

32

learner is able to consume in a day) and my y-axis or

outcome variable is “BanglaScore” (scored out of 100).

91. Red arrows: In the graph to the right, the learner with a

spice tolerance of 10 has a score of about 38 on the Bangla

test.

Purple line: Now, what score would a learner get who has

a spice tolerance of 20, or who can eat 20 peppers a day?

Green arrows: We can use our model to make predictions.

If a learner has a higher or lower spice tolerance, what

will their corresponding Bangla score be? Here, we can

use our model to predict that a learner with a spice

tolerance of 20 will obtain a Bangla score of about 72!

Useful stuff!

92. But, where does this line come from? We can just draw a

line across our set of points to get a very crude snapshot

of the relationship between spice tolerance and Bangla

scores, but, where students are concerned, we want to be

as accurate as possible and use the best possible model.

So, instead of drawing a line across the points, we use a

mathematical formula to get our diagonal line (our

model). The formula is shown to the right. The slope of

the line (“a”) determines the gradient of the line, and the

incercept (“b”) is the point at which the line crosses the y-

axis. Both slope and intercept are what we call

“parameters.”

The slope of the line for the above data is about 3.8, and

the line looks like it crosses the y-axis at about 3.5.

Therefore, our model/line/equation is…

y = 3.8x + 3.3

You may have noticed that I cheated slightly and said the

“slope of the line for the above data is about 3.8.”

Thankfully, we have statistical software to give us this

information. I plugged the data into R, and R told me the

slope is 3.8. It also told me the intercept, but I ignored it

and used by eyeballs.

In summary, we plug the data into software, we let the

software tell us what the slope and intercept parameters

𝒚 = 𝒂𝒙 + 𝒃

y = “BanglaScore”

a = slope

x = “SpiceTolerance”

b = intercept

We can use our y = 3.8x + 3.3 model to make

predictions. Recall that “x” is spice tolerance.

So, plugging in 10 for x (10 peppers), we

get…

y = 3.8(10) + 3.3

 = 38 + 3.3

 = 41.3

Someone who has a spice tolerance of 10 will

get about 41.3 on the Bangla test! Looking at

the graph with our line on it, that number

looks about right.

10 peppers

33

are for our line, and we use the line/equation/model to

make predictions. That’s regression, folks.

93. Next, we used the spice tolerance and Bangla score data

to generate a model to make some predictions. But, how

do we know that this model is a ‘good’ one? The answer

is: We compare it to another model. The other model that

we have readily available is the mean. So, we use the

computer to tell us whether our diagonal line is better than

the flat line for making predictions. Whenever someone

who uses regression reports statistical significance, they

usually mean that their regression model is significantly

better than the mean for making predictions.

Before we go into details, the regression model, just like

the mean one, has error in it (just about everything we do

has error); our data points never exactly fall on the model

line. For the mean, how far a point is off the line is called

a deviation. We have the same thing in regression, but

statisticians decided to call them residuals.

In the above graph, residuals are shown with

the dotted red lines.

94. Just like for the mean model, we can see that our data

points in this example fall both above and below the line.

Therefore, if we add them all up, values cancel each other

out, and we end up with something close to 0. However,

also like the mean model, we get around this by squaring

each value and then adding them up. For regression, this

is know as the sum of squared residuals (SSR).

Now, we fit a regression line to the model, but the line

might not be a very good one, so, as noted above, we can

compare it to the mean to see if it’s much better than just

using the mean.

We take the same set of data points, but this time calculate

the SS for the mean (shown in the middle graph). Each

red line represents the deviation of the point from the

mean. We will call this SSX where “X” stands for ‘mean.’

The next step is to calculate the difference between the

SSX and SSR. If there is a big difference, then the model

is better than the mean. If there is little difference between

the SS of the models, then our regression line is just about

as good as using the mean to make predictions about the

data—and so we could just use that. The difference

between SSX and SSR is the sum of squares of the model

(SSM). See the bottom graph.

34

Just how much better the regression model is than the

mean for capturing the data can be expressed as R2. R2

tells us how much variance is explained by the model, and

this value is a percentage. The R2 formula is thus…

𝑅2 =
𝑆𝑆𝑀

𝑆𝑆𝑋

95. Also like the mean model, outliers mess with the fit and

make the line jump around.

If you look at the graph to the right, we have one outlier

at the bottom right. This person has an insane spice

tolerance, and yet they got a very low score on the Bangla

test. This one outlier pulls the line down, makes the slope

flatter, and makes the line fit the data much worse. Now

think about the comparison between the mean and

regression as models for this data set. Do you think there

would be that much of a difference? Would the R2 be large

or small?

96. To quickly summarize this section, when we talk about correlations or regression, we are talking about

fitting not a flat line to the data but a diagonal one. We calculate the diagonal line using the y = ax + b

equation, where a is the slope and b is the intercept. The computer looks at the data we input and then

returns the line that best fits the data—in other words, it fills in the a and b values for our data. We can

then use this line to make predictions. To determine whether or not the regression model is really any

good, we compare it to the mean. We calculate SS for both mean (SSX) and regression (SSR) models and

then look at the difference between the two. The difference can be expressed as SS for the model (SSM).

We divide SSM by SSX to get R2, which tells us how much variance (dots off the line) is ‘explained’ by

the model. Outliers mess with how nicely the line fits the data points.

97. Rasch Analysis and IRT

Now let’s talk about our last model or analysis for this series of three models—the Rasch model. As

noted, the Rasch model is a type of logistic regression. Knowing what we know about regression and the

mean as models, making sense of Rasch data should be a lot easier. There are two things that we would

like to point out to get things starts. First, the y-axis or outcome variable in Rasch analysis is not a Bangla

score but a probability. Second, Rasch analysis/IRT does not use the data from individual points to

calculate models—it uses patterns of responses for individuals across all items. So, instead of using a

line to predict the likelihood of a probably response (a single data point), we use Rasch to predict the

probability that a person would get a series of items correct or incorrect (i.e., a person’s response pattern).

35

98. The y-axis or outcome variable in Rasch analysis (and

IRT, but from now on we just talk about Rasch) is not a

score but a probability. Rasch is a form of logistic

regression. Think about this: For regression, a crucial

assumption that you have to meet before you can perform

the analysis is linearity; when you correlate your two

variables (BanglaScore and SpiceTolerance), the data

need to correlate so that you can put a line on the data

points at some angle.

If we correlate data between spice tolerance (a continuous

variable) and a series of right/wrong or 0/1 answers for

responses to questions on the Bangla test, we get the

graph to the right. The data points are either at the top of

the graph (the 1’s) or the bottom (the 0’s); they do not

create a linear set of data points, and so the assumption of

linearity is violated.

99. We get around the linearity problem in Rasch by

transforming the y-axis or outcome data into

probabilities. In other words, we want to know the

likelihood that someone will get a response correct or

incorrect, and that likelihood can only range from 0 (no

chance in hell) to 1 (a sure-fire guarantee).

In the graph to the right, this is what the Rasch model

looks like. Notice that the “P ” on the y-axis only goes

from 0 to 1. The values on the x-axis are the ‘ability’ of

learners, such as Bangla ability or pepper-eating ability.

Because the probability can only range from 0 to 1, the

curve kind of tapers off close to 0 and 1 and bends inward

or outward, making our model line an S-shaped one,

which is called an “ogive” or a “sigmoid.” If this is one

question, the further to the right we move on the x-axis

(the more able/proficient/spice-tolerant a learner is), the

more likely a learner is to get this item correct (closer to

1). The more we move to the less (the less

able/proficient/spice-tolerant a learner is), the chances of

a learner getting this item correct decrease substantially.

People are never 100% likely to get an item right or

wrong, which is why the curve is S-shaped.

In Rasch analysis and IRT, this type of curve

for an item is called an “item characteristic

curve” (ICC) or an “item trace line.” We can

get a trace line for the entire test, too, and this

is called a “test characteristic curve” (TCC),

which is the sum of all the ICCs in a test.

36

100. As we noted above, what counts as data for Rasch

analysis is not the individual data points but rather the

response patterns (even though we need the data, of

course, to get the response patterns). What we want is a

line not that we can use to predict individual scores but a

line that can tell us the likelihood of a string of responses

being observed.

Consider the information to the right for a test made up of

four dichotomous items. There is one column for each

item. For four items, all sixteen possible “Response

Patterns” are shown—in other words, there is no other

possible combination of right/wrong answers a four-item,

dichotomous test. In the “Count” column, these values are

for the number of test takers who obtained the

corresponding response pattern. For instance, 44 people

got every item wrong on the test (0000), while 75 people

got every item right (1111).

We feed this information into the Rasch analysis to get

the S-shaped curve that describes the response patterns of

the data in our dataset.

Response

Patterns Count

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

44

65

25

40

4

6

4

12

7

9

25

29

2

8

38

75

101. Though the actual math is beyond me (can’t remember

calculus from high-school days), we feed the response-

pattern data into the Ministep software to estimate the best

possible line. In our linear regression example above, we

compare our regression model with the mean to figure out

whether or not the regression model is any better than the

mean. In Rasch, genius mathematicians and statisticians

came up with algorithms to fit the line to the data. After

one Rasch, S-curve model is fit to the data, another one is

fit, and the first model is compared with the second. This

process continues until we obtain the line that best

predicts the response patterns in our data.

The actual Rasch model is given below:

1

1 − exp [−(𝑎𝑗Θ + d)]

In the above model (how we get the line), “a”

is the slope and “d” is the intercept; we still use

slope and item parameters for Rasch analysis,

just like the linear regression model. The “Θ”

or ‘theta’ is the ability, proficiency, or spice

tolerance (etc.) of a test taker.

102. Now that we know how Rasch generates a model for the

data, let’s conclude this section by talking a little bit about

fit, which is where we left off in the analysis of the Bangla

C-test data.

To the right, we have the responses of 19 test takers to a

10-item test. This is called a “scalogram.” Test takers are

sorted with high-ability test takers at the top, and low-

ability test takers towards the bottom. There is one

column for each item. Easier items are towards the left,

and the most difficult items are towards the right. Young

Young A

Walsh

Zoe

Mal

River

Charlie

Youssef

Soujin

Zhizhou

Liz

1111111111

1011111111

1111111101

1111111110

1111111100

1111111000

1111101010

1110101000

1110110100

1110010100

37

A is the best test taker, since we can see that she got all

items right (1111111111). Jane (not surprisingly) is one

of the worst, getting all items wrong (0000000000). In

between Young A and Jane, we have other test takers with

a range of ability levels.

Red box: We have a lot of 1’s in this corner; the test takers

with the highest ability levels are getting all of the easier

items correct.

Blue box: We have a lot of 0’s in this corner; the test

takers with the lowest ability levels are getting the most

difficulty items wrong.

This is what we would expect in the response patterns of

test takers when we have test takers with a range of ability

levels and items that span a range of difficulties.

Sudipta

Carly

Todd

TJ

Harrison

Sean

Nick

Simon

Jane

1101010000

1110010000

0000000011

1010100000

1001000000

1100000000

0100000000

1000000000

0000000000

103. The fit of the Rasch model is affected by funky items and

funky response patterns. Often, misfitting items are a

result of misfitting responses.

In the response patterns for the 10-item test, there are

several unexpected response patterns. Depending on

where these patterns are located in the response string, we

get high infit or outfit (i.e., misfit) values in the Ministep

output (see [82] above).

Red box: Walsh’s response pattern is strange. He is a

high-ability test taker, so we would expect him to get the

easier items correct. However, he scored a 0 on the second

item. Given his ability, this is an unexpected response.

Walsh maybe got this item incorrect because he dozed off

or perhaps there was a data-entry error. Thinking back on

the Wright map, this item would be below Walsh,

meaning there is a higher probability Walsh would get

this item right. Therefore, Walsh would have a high Outfit

mean square value.

Blue box: Todd’s response pattern is just as weird. Todd

is (true to form) a low-ability test taker; accordingly, he

got all the easy items and most of the middle-difficulty

items wrong. However, for whatever reason, he got the

two most difficulty items right. Recalling the Wright map,

these items would be well above Todd, and Todd would

have a high Outfit mean square value as well. Todd

maybe cheated on these items, which is why he got them

right, or they were lucky guesses.

Walsh’s ability is about here in relation to the

test, but we are seeing a strange response

pattern outside this range—hence the outfit

mean square being high.

Walsh

1011111111

Todd

0000000011

Todd’s ability is about here in relation to the

test, yet we are seeing strange response

patterns well outside this range—again, hence

the high outfit mean square value.

38

104. That’s for outfit mean square values, but what about infit

mean square values? What does a high infit score mean?

Well, let’s take a step back. In an ideal test, we would see

a response pattern like the one to the right. This is called

a “Guttman” response pattern. A test taker for whom the

test is well targeted got the first five items right and the

last five items wrong. This means that, right there in the

middle between the “1” and “0,” is the point at which the

difficulty of items begin to exceed the test taker’s ability;

in other words, it is precisely at this point that the

probability of the applicant obtaining correct answers

begins to decline. Below this point, however, the items

are not too difficult for the test taker, and she gets them

right.

Guttman

1111100000

105. However, response patterns like the one above are rare.

There is usually some variability right at the point where

items begin to challenge a test taker’s ability; maybe they

get a few in that range correct and a few incorrect.

Red box: Soujin’s response pattern shows variability in

the middle of the response string. The test is overall well-

targeted for a test taker like Soujin; she gets the first three

items correct and the last three items incorrect. In the

middle, there is some variability; it is at this point that

Soujin’s ability begins to be challenged by test items—

this variability is exactly what we need for measurement

purposes. When response patterns in this middle range are

unexpected, we see high infit mean square values.

Unexpected responses outside this range result in high

outfit mean square values. Carly’s response pattern would

yield a high infit mean square. Unexpected response

patterns affect the fit of the Rasch model, as opposed to

individual, outlying data points.

Soujin

1110101000

Carly

1110010000

106. So far, we have talked about fit and response patterns for

Rasch analysis using dichotomously scored items.

However, what about super-items like C-test texts? Well,

the basic principle is the same.

To see a scalogram of Bangla C-test scores, return to the

main Ministep window.

Click “Output Tables” and then click on “22.

Scalograms.”

39

107. In table 22, the scalogram resembles the one for

dichotomous items above.

Rex box: We are seeing the more proficient Bangla

learners getting easier items correct at the top, left-hand

corner of the scalogram.

Blue box: Likewise, we are seeing the lower-ability

Bangla learners getting the more difficult items incorrect

at the bottom, right-hand portion of the scalogram.

For the Bangla C-test, the Rasch model—our S-shaped

curve—is applied such that the probability of obtaining

these response patterns is obtained.

…

108. To briefly summarize this section, the Rasch model is a type of logistic regression. To overcome the

linearity problem, y-axis or outcome data is transformed into a probability. Because a probability can

only range from 0 to 1, the Rasch model is not a diagonal line but an S-shaped curve, called a “sigmoid”

or “ogive.” For items, the curve is called an “item characteristic curve.” For the whole test, the curve is

called a “test characteristic curve.” Data for Rasch analysis is not individual data points but response

patterns. The model is fit to the data so that the likelihood of obtaining the observed response patterns is

maximized. Unexpected response patterns affect the fit of the Rasch model. Unexpected response

patterns within the productive measurement range (the point at which we start obtaining 0’s and 1’s for

a test taker) result in high infit mean square values. Unexpected responses outside the productive

measurement range result in high outfit mean square values. Variability in responses—that set of 0’s and

1’s—is needed for statistical measurement; without variability, our test isn’t doing any ‘measuring.’

109. Analyzing C-test Data-Part 2

110. Let’s get back to analyzing some data! To select a final set of five texts for the Bangla C-test, we are

going to be spending time in the following areas/screens: the item ICC plots, student fit indices, item fit

indices, and our original .txt control file.

111. Let’s start by seeing if we have any really strange

response patterns by students in our data to begin with.

In the main Minstep window, click “Output Tables” and

then “6. Student (row): fit order.”

40

112. In the window that pops up, look at table 6.1 at the top.

Red box: Bangla test takers have been sorted according to

fit values. Those who most underfit the data—those with

higher infit/outfit mean square values—are towards the

top. Those who overfit the data (and don’t contribute

much to measurement) are at the bottom. We are more

concerned with outfit mean square values. The ideal outfit

mean square is about 1.00, but the 0.50–1.50 range is

productive for measurement. Anything about 2.00 really

messes with the measurement properties of the test.

Blue box: We could very well have selected a different

option in the “Output Tables” menu to order students in a

different way. For instance, by selecting “17. Student:

measure,” students’ are ordered by their ability measure,

or their position on the Wright/variable map.

113. If you look to the left of

table 6.1, you can see that

the student with a high

outfit mean square value is

“Entry Number 26.”

However, if you look in the

rightmost column, the

student is “Student 27.”

Values in the rightmost

column correspond to

entries in the Excel

spreadsheet. Because there

was one missing student,

these values are offset.

When it comes time to remove any misfitting students’ or students’

responses, as well as to cut down on texts, we need to remember to do in

referring to entry numbers.

114. Scroll down to table 6.4, “Most Misfitting Response

Strings.”

This table is very handy; it shows us precisely which

scores on which C-test text(s) were unexpected given

students’ Bangla proficiency levels.

Red box: In the first “Student” column, students’ entry

numbers are shown. In the second column, student ID

numbers (from the Excel spreadsheet are shown).

Blue box: These numbers correspond to text entry

numbers. When there are 2+ digits, numbers are stacked

vertically (as in text 10, for example).

41

Purple box: Ministep flagged student 26’s responses to

text 7 (1/24 blanks), text 2 (0/24 blanks), and text 10

(11/24 blanks) as misfitting.

Before we begin to reduce our number of Bangla C-test

texts from 10 to 5, let’s begin by removing these

misfitting responses. Now, in removing misfitting

responses, we will be increasing the overall model fit.

However, because we are working with such a small

sample size, we want to preserve as much data as

possible. So, instead of deleting an entire test taker’s row

of data (and their responses to all texts), we will only

remove responses to individual texts.

115. Close out of the “6. Student (row): fit order” window.

116. Close Ministep.

117. Double click on the “Bangla C-test” control file.

In the control file, somewhere below the specification

lines, enter in the “EDFILE=*” information to the right.

The “*’s” indicate the start and finish of a list of

information.

“27 7 .” means ‘Mark person entry number 26’s resposne

to text #7 as missing. We repeat this information to mark

26’s response to texts 2 and 10 as missing. Make sure to

add a space between each value and the missing period.

118. Click “File” and “Save” to save the “Bangla C-test”

control file.

42

119. Drag and drop the “Bangla C-test” control file over the

Ministep desktop icon to open it.

120. “Report output file name?” select “Enter.”

“Extra specifications?” select “Enter.”

The analysis runs.

121. In the summary table at the

bottom, notice now that the

student and text separation

have improved. The overall

model fit has also improved,

with outfit mean square values

being closer to 1.00, which is

ideal.

122. Let’s return to table 6.1 to re-assess student fit.

In the main Minstep window, click “Output Tables” and

then “6. Student (row): fit order.”

All student outfit mean square values are < 2.0, which is

what we want. We can now begin to start removing a few

texts!

123. Let’s remind ourselves of the hierarchy of texts in

relation to students.

In the main Ministep page, click on “Output Tables.”

Click on “12. Text: map.”

43

124. We have quite a few texts bunched up together at the top

of the Wright map, meaning they are at roughly the same

level of difficulty. If we identify any problematic texts

from among this group, they are prime candidates for

removal as we look to optimize the C-test by reducing the

overall number of texts from 10 to 5.

125. In the main Minstep window, click on “Graphs” and then

“Expected Score ICC.”

126. This is the item-characteristic curve, or ICC, for text #1.

Now that we know what the Rasch model is and what it

looks like, this graph should make more sense to you.

Note that the values on the y-axis are not probabilities;

they have been rescaled to correspond to blanks on the

test. Gives us a very detailed view of resposne patterns to

this particular item.

The X’s and blue line are the actual, observed data, while

the red line is the model idea. Ideally, the X’s (our data)

fall right on the red line. The blue-gray lines around the

red and blue lines are the confidence intervals. Any points

that fall outside the confidence intervals are cause for

concern. When we have misfitting response patterns, the

blue line and series of X’s gets pulled outside the

confidence interval band.

Each X on the blue line represents the group of test takers

with ability measures at that level. For instance, Bangla

learners with an ability of 1 on the x-axis have a 50-50 get

about 16/24 blanks correct on text #1. Those with an

ability of -0.5 score about 7/24 blanks on text #1. So far,

text #1 looks okay. The observed data follows the red line,

and there are no breaks outside of the confidence interval

band.

44

127. Click the red “Test CC” buttom at the bottom right of the

screen.

128. At the bottom of the plot screen, use the sliders to adjust

the “maximum X-value” to 7 and the “minimum X-value”

to -7.

129. The test characteristic curve or TCC is shown to the right.

Instead of looking at individual item ICCs like we did

above, we can add them all up to get a sense of how

students are scoring on the test as a whole given their

ability level or their “measure on latent variable.”

From the TCC curve on the right, we can see that students

with an ability of 1.4 on the Bangla C-test are scoring in

the neighborhood of about 200/250 blanks on the Bangla

C-test. Again, scores on the y-axis have been rescale from

probabilities to C-test blanks.

Since we are going to reduce the number of texts from 10

to 5, the TCC will change quite a bit. However, it’s a very

informative tool for test development purposes.

130. I want to point out that most of the information/plots that

you can call for in the “Graphs” menu from the main

Ministep page can also be accessed using the different

colored buttons to the right of the plot screens that open

up.

45

131. Click the yellow “Exp+Empirical ICC” button to return

to the ICCs.

132. Click the green “Next Curve” button until you reach text

9 (“7. T9”).

The empirical blue line for text 9 is problematic; it doesn’t

follow the expected-model red line very closel. At two

points, it jumps outside of the confidence-interval band.

Let’s go ahead and remove text 9.

133. There are two places where we can instruct Ministep to

remove either a student or a text from the analysis.

In the main Ministep page, click on “Specification.”

134. We can enter additional commands in the “Control

Specification = Value” window that pops up, just like

entering specifications in our control file.

To delete a text or item, type “IDELETE=”. To remove a

person from the analysis, type “PDELETE=.” You will

have to specify the text or person you wish to remove by

entering their entry number. “I” stands for ‘item,’ and “P”

stands for ‘person.’ (You may have guessed.)

Let’s remove text 7. Type “IDELETE=7”.

Click “OK.”

46

135. At the bottom left of the main window, you will notice

that two new lines appear. The bottom-most lin now reads

“Currently Reportable Text = 9,” meaning 9 texts are in

the analysis.

136. From the top menu bar, select “Output Tables” and then

“3.1 Summary Statistics.”

137. In table 3.1 that opens up, you can now see the summary

text table reads “Summary of 9 Measured Text.”

The information in the summary table at the bottom of the

main analysis window does not change. To change that,

we need to close Ministep and enter the “IDELETE=”

information elsewhere.

138. Close the “Expected Score ICC” window.

139. Close Ministep.

140. Double click on the “Bangla C-test” control file.

Somewhere in the control file, enter “; IDELETE=7” with

no spaces. I like to put this line above the “EDFILE=*”

line.

It’s always a good idea to keep a record of what

responses/students you are removing as well as which

47

texts you are pulling out of the analysis. The control file

is a good place to do just that. We have now noted that we

are going to remove text 9 (entry #7), and we have

‘commented out’ this note with a semicolon.

Copy and paste the “IDELETE=7” part of the line to

your clipboard.

141. Click “File” and “Save” to save the “Bangla C-test”

control file.

142. Drag and drop the “Bangla C-test” control file over the

Ministep desktop icon to open it.

143. “Report output file name?” select “Enter.”

“Extra specifications?” paste the “IDELETE=7” here

and then select “Enter” on your keyboard. This is the

second place where we can remove students and texts

from our analysis.

The analysis runs.

144. In the summary table at the bottom,

we now see “9 Measured” in the

text box. We successfully removed

text 9 from the analysis.

Person and item separation have

gone down slightly, and model-fit

indices are about the same. Person

separation will often go down as we

remove texts since we are removing

statistical information used to

calculate students’ abilities.

48

145. In the main Minstep window, click “Output Tables” and

then “6. Student (row): fit order.”

All student outfit mean square values are now < 2.0. Let’s

press on to removing another text; 1 down and 4 more to

go.

146. Click on “Output Tables” and then “12. Text: map.”

Let’s remind ourselves of the ‘lay of the land.’

Texts 4 and 6 are still close together, as well as texts 1,

12, 10, 3, and 5.

Let’s revisit the ICC curves.

147. Click on “Graphs” and then “Expected Score ICC.”

148. Click the green “Next Curve” button until you reach text

7 (entry #6).

The empirical blue ine is doing two things we don’t want

it to. It jumps outside the confidence-interval band at

about 1.5 logits on the x-axis, and it hooks down towards

the top. As ability increases, we want scores to increase,

too. However, towards the top, as ability increases, scores

decrease.

Blue box: The decrease that we’re observing only occurs

over the range of 16-19/24 blanks. Something funny

could be going on with these blanks, or more Bangla C-

test takers could straighten the blue line out in this range.

Regardless, in the spirit of informed, systematic text

reduction, we select text 7 for removal.

Let’s remove text 7 from the analysis by adding

information to the control file.

49

149. Close the “Expected Score ICC” window.

150. Close Ministep.

151. Double click on the “Bangla C-test” control file to open

it.

Add “6” to the “; IDELETE=” line and then copy and

paste “IDELETE=6,7” (again, with no spaces) to your

clipboard.

152. Click “File” and “Save” to save the “Bangla C-test”

control file.

153. Drag and drop the “Bangla C-test” control file over the

Ministep desktop icon to open it.

154. “Report output file name?” select “Enter.”

“Extra specifications?” paste the “IDELETE=6,7” here

and then select “Enter” on your keyboard. This is the

second place where we can remove students and texts

from our analysis.

The analysis runs.

50

155. Make note of the changes in the

summary table at the bottom of the

analysis window. Student and text

separation are still good. Fit has

improved slightly.

156. In the main Minstep window, click “Output Tables” and

then “6. Student (row): fit order.”

We have one student with an outfit mean square > 2.0.

157. Scroll down to table 6.4.

The misfit is due to student 32’s responses to text 5 and

2.

Let’s remove them from the analysis.

158. Close out of table 6.1.

159. Close Ministep.

160. Double click on the “Bangla C-test” control file.

Add the removal information for student 32 (entry #31)

to the “EDFILE=*” list.

51

161. Click “File” and “Save” to save the “Bangla C-test”

control file.

162. Drag and drop the “Bangla C-test” control file over the

Ministep desktop icon to open it.

163. “Report output file name?” select “Enter.”

“Extra specifications?” paste the “IDELETE=6,7” here

and then select “Enter” on your keyboard. This is the

second place where we can remove students and texts

from our analysis.

The analysis runs.

164. Note the improved separation values

and fit indices in the summary table.

It’s a good idea to monitor what’s

happening as we proceed.

165. In the main Minstep window, click “Output Tables” and

then “6. Student (row): fit order.”

We have one student (entry #15) with an outfit mean

square > 2.0, but that student’s responses were not flagged

as misfitting in table 6.4. So, we press on.

52

166. Click on “Output Tables” and then “12. Text: map.”

Let’s see what’s happened.

Texts 4 and 6 are now at the same difficulty level. Texts

1, 12, 10, 3, and 5 still form a cluster at about 0.5 logits

at the top of the Wright map.

Let’s revisit the ICC curves to remove an additional text.

167. Click on “Graphs” and then “Expected Score ICC.”

168. Click the green “Next Curve” button until you get to text

10 (entry #8).

For text 10, we see a clear jump of the blue empirical line

outside of the confidence-interval band.

Let’s remove text 10 next.

By now, hopefully the process for going about removing

misfitting responses and culling texts is becoming

clearer!

169. Close the “Expected Score ICC” window.

53

170. Close Ministep.

171. Double click on the “Bangla C-test” control file.

Add text 8 to the “; IDELETE=” specification line and

copy and paste the “IDELETE=6,7,8” bit to your

clipboard.

172. Click “File” and “Save” to save the “Bangla C-test”

control file.

173. Drag and drop the “Bangla C-test” control file over the

Ministep desktop icon to open it.

174. “Report output file name?” select “Enter.”

“Extra specifications?” paste the “IDELETE=6,7,8” here

and then select “Enter” on your keyboard.

The analysis runs.

175. Take stock of the changes in the

summary table at the end of the

analysis. Student separation has

gone down. The Student fit is worse,

seeing an outfit mean square of .90.

This means we probably have some

misfitting response patterns given

our new 7-text C-test.

54

176. In the main Minstep window, click “Output Tables” and

then “6. Student (row): fit order.”

There are two students with outfit mean square values >

2.0. Note, however, that the standardized z-scores (which

indicate the likelihood of the misfit) are < 2.0.

Here, with a small dataset, I would be inclinded to let an

outfit mean square of 2.14 pass. The last thing we want to

do is be blindly dichotomous in our decision-making

when it comes to cutoff values. 2.0, while a value

indicating noise in the measurement system, is

nevertheless an arbitrary cutoff.

177. However, if you scroll down to table 6.4, we see that the

two misfitters, students 11 and 26 (entry #’s 10 and 25)

have unexpected responses to texts 5 and 1.

Up until this point, the empirical blue line in the expected

ICC plot of text 1 has been borderline, falling just outside

the confidence-interval band at points.

Let’s remove these misfitting responses to be consistent

with decisions made so far. However, let’s keep an eye on

the ICCs for texts 5 and 6 to see if they continue to be

problematic.

Also note that we have removed quite a few responses at

this point. In a large dataset, removing a few misfitting

student responses is not a big deal; however, we need to

be able to carefully justify and understand the decisions

we are making when it comes to removing responses in

an alread sparse data set.

178. Close out of table 6.1.

179. Close Ministep.

55

180. Double click on the “Bangla C-test” control file.

Red box: In the “EDFILE=*” list, entering the

information to mark responses to texts 5 and 1 as missing

for students 10 and 25.

181. Click “File” and “Save” to save the “Bangla C-test”

control file.

182. Drag and drop the “Bangla C-test” control file over the

Ministep desktop icon to open it.

183. “Report output file name?” select “Enter.”

“Extra specifications?” paste the “IDELETE=6,7,8” here

and then select “Enter” on your keyboard.

The analysis runs.

184. As always, see what changed in the

summary table at the end of the

analysis. Student separation went up,

but fit is still lower with an outfit mean

square of .90.

56

185. In the main Minstep window, click “Output Tables” and

then “6. Student (row): fit order.”

There are two students with outfit mean square values >

2.0. However, values are very close to 2.0. Having

removed as many responses as we have so far, let’s keep

these responses in the analysis and inspect the item ICCs.

186. Click on “Graphs” and then “Expected Score ICC.”

187. Right away, text 1 shows its ugly head. There’s a lot of

zig-zagging amongst lower-ability students, and the

empirical blue line jumps outside the confidence-interval

band at about -2.0 logits.

Some zigzagging in the empirical line is not altogether

mind-blowing given the type of data we’re analyzing and

the small test-taker sample size. However, we must

proceed in as principled a manner as possible. We have

the confidence-interval breach, some noted misfitting

responses to text 1 in the last round of removed responses,

and text 1 is at the same difficulty level as a few other

texts. Let’s chuck it.

188. Close the “Expected Score ICC” window.

189. Close Ministep.

57

190. Double click on the “Bangla C-test” control file.

Add “1” to the “; IDELETE=” specification line and then

copy and paste “IDELETE=1,6,7,8” to your clipboard.

191. Click “File” and “Save” to save the “Bangla C-test”

control file.

192. Drag and drop the “Bangla C-test” control file over the

Ministep desktop icon to open it.

193. “Report output file name?” select “Enter.”

“Extra specifications?” paste the “IDELETE=1,6,7,8”

here and then select “Enter” on your keyboard.

The analysis runs.

194. Student and text separation values

have gone up. Text fit is slightly

worse (again, having deleted yet

another text), with an outfit mean

square of .85. Note also that the

overall error in the model is going up;

the student “Real RMSE”, or ‘root

mean squared error,’ is at .27—up

from .16 in our first, 10-text run!

58

195. In the main Minstep window, click “Output Tables” and

then “6. Student (row): fit order.”

Alas, we have two more students with outfit mean square

values > 2.0. Notably, the standardized z-scores are also

> 2.0. For a small test-taker sample size, the z-scores are

a bit more trustworthy than if we had had 500 test takers

for the Bangla C-test, in which case all z-score values

would have been > 2.0!

196. Scroll down to table 6.4. The most unexpected resposne

patterns for students 15 and 19 (entries 14 and 28) are to

texts 3, 4, and 9.

Let’s how these texts ICC curves stack up against one

another and one of the other candidate texts for deletion

before we remove any more data.

197. Click on “Graphs” and then “Expected Score ICC.”

198. Click the green “Next Curve” button until you reach text

5 (entry #4).

Scanning ahead, several texts are candidates for deletion

at this point.

There is one point at which the empirical blue line of text

5 shoots outside the grey confidence-interval band. The

misfitting responses we identified in table 6.4 could

account for the deviation from the red, Rasch-model line.

59

199. Click the green “Next Curve” button until you reach text

12 (entry #10).

This is perhaps the other candidate text for deletion. The

empirical blue line jumps outside the confidence interval

band at about -0.3 on the x-axis.

We have two options at this point. We can continue to

remove misfitting response patterns for students 15 and

19, and perhaps the ICC for text 5 will improve. Or, we

refrain from removing any more data from the analysis

and remove text 12 from the analysis.

Crucial to note is that both texts 5 and 12 are at the same

level of difficulty; they are both part of that cluster we

identified at the top of our Wright map. Knowing this, the

second option seems like the way to go: we can avoid

deleting any more data, and we are still removing one of

the initial texts we identified for removal.

Let’s remove text 12. After removing text 12, we have our

final, 5-text C-test!

200. Close the “Expected Score ICC” window.

201. Close Ministep.

202. Double click on the “Bangla C-test” control file.

Add text 12 (entry #10) to the “; IDELETE=”

specification line in the control file and then copy and

paste the “IDELETE=1,4,6,7,10” portion to your

clipboard.

60

203. Click “File” and “Save” to save the “Bangla C-test”

control file.

204. Drag and drop the “Bangla C-test” control file over the

Ministep desktop icon to open it.

205. “Report output file name?” select “Enter.”

“Extra specifications?” paste the “IDELETE=

1,6,7,8,10” here and then select “Enter” on your

keyboard.

The analysis runs.

206. Note the changes in the summary table

at the bottom of the analysis page.

Student separation is a bit lower, but

it’s still > 3.0 (with a reliability > .90)

and we avoided additional data loss.

Text separation and reliability are just

fine. The fit is not as close to 1.00 as

we would like, but it is not horrible. At

about .90, the outfit mean squares for

both students and texts indicate that

our C-test slightly overfits the data,

meaning it is slightly less informative

overall.

61

207. Click on “Output Tables” and then “12. Text: map.”

In the portion of the Wright map shown to the right,

several points are worth noting.

Texts 10 and 3 are close together at the top of the map;

they are at the same level of difficulty. Future Bangla C-

test developers might try to incorporate a more difficult

text. Likewise, texts 4 and 6 are close together at the

bottom of the map; they are also at roughly the same level

of difficulty. Given the ability of the test-taker sample in

this group (being on the lower end), it would be

worthwhile to also try to incorporate an even easier text

into the Bangla C-test.

Lastly, while texts 10 and 3 as well as 4 and 6 are close

together, we are also working with few Bangla learners.

One way to increase item separation, apart from selecting

new items, is to also sample (more) test takers from a

wider ability range. With a wider ability range of test

takers, we have more statistical information the length of

the Wright map to determine the location and hierarchy

of texts. While including more difficult and easier texts

would be prudent, it is also likely that future work with

more ‘middle’ and ‘advanced’ learners could tell us with

more certainty how the two sets of stack up against one

another and whether they are, in fact, at such similar

difficulty levels.

208. Click on “Graphs” and then “Expected Score ICC.”

We’ve already looked at the individual item ICCs. There

is some wonkiness in the ICCs here and there, and

cleaning up misfitting responses would make the

empirical blue lines fit the Rasch-model red lines better.

However, in the interest of not deleting any more data,

we’re willing to accept some imperfection.

209. Click on the red “Multiple Item ICCs” button.

Let’s look at all of our ICCs at the same time.

62

210. In the window that pops up, you can call for item ICCs

individually by selecting cells in the “Model” column for

the expected model red lines that we’ve been looking at

and the cells in the “Empirical” column to call for the

empirical blue lines.

211. Click on the white “Select All Model ICCs” button and

the purple “Select All Empirical ICCs” button.

212. All cells in the “Model” and “Empirical” columns should

now be green.

213. Click “OK.”

214. The “Item Characteristic Curves” plot shows all of the

text ICCs together along with the model curve (the blue

line). This plot gives us a nice, birds-eye view on how

well response patterns across texts fit the Rasch model.

You can click on individual colored lines to investigate

individual texts. The red line is for text 4, for example.

63

215. Possibility for Placement or Screening

216. Let’s do one more thing before we call it a day on the Bangla C-test. C-tests can be useful tools for

placement and screening purposes, and the Wright or variable map available in the Ministep software

can help in this regard. Now, unfortunately, the Bangla C-test data is not the best data set to illustrate

how Ministep and Rasch could be used to help inform placement/screening decisions because of the

number of heritage-language learners among test takers. So, we will use the Korean data set.

217. Download from website: Check to make sure okay to

use the Korean data.

218. Double click on the “Ministep” icon to open it.

219. Click “Excel/RSSST” at the top of the Ministep window.

220. Click the green “Excel” button to create a control file for

the “Korean (5-Texts)” data.

221. Click the “Select Excel file” button at the top left of the

window that pops up to navigate to where you have the

“Korean (5-Texts)” data saved.

222. Select the “Korean (5-Texts)” file and select “Open.”

64

223. In the Excel spreadsheet for the “Korean (5-Texts)” data,

just like in the Bangla data spreadsheet, there is a column

in which the students’ institutional level was indicated

(i.e., first-year Korean learners = “1,” second-year

Korean learners = “2,” etc.). This column’s heading is

“Vmap-Level” under the “! Other Variables” heading in

Ministep window.

Red boxes: Copy-paste “Vmap-Level” under the “!

Person Lable Variables” line (in the Bangla analysis, we

copy-pasted the “ID” variable.

Blue boxes: Copy-paste the five text lines beneath the “!

Item Response Variables” line. The “Korean (5-Texts)”

spreadsheet contains columns not for 10 texts but 5.

224. Click the green “Construct Winsteps file” button.

225. Type “Korean Placement” into the “File name:” field and

then click “Save.”

226. Close the .txt window that opens up.

65

227. Drag and drop the “Korean Placement” file on the

Ministep icon to open it.

228. “Report output file name”

Press Enter.

“Extra specifications”

Press Enter.

229. In the main Ministep window, select “Output Tables”

and the select “1. Variable maps.”

230. A variable or Wright map opens up. However, notice that,

this time, instead of displaying X’s for test takers, the test

takers insitutional levels are shown. Again, “L-(4)”

means ‘level 4,’ “L-(2)” means ‘level 2,’ etc.

The information contained in this chart speaks to the

concurrent validity of the Korean C-test. At the bottom of

the Wright map are test takers with lower Korean

proficiency levels, and this is the portion of the map

where we see many L-(1)’s. As we move up the map, we

slowly see more L-(2)’s and L-(3)’s. At the top of the map

are the highest proficiency learners, those in their fourth

year of Korean study at their institutions. These test takers

are shown by L-(4)’s. This array of test takers is what we

would expect; those with more years of Korean study are

scoring better on the Korean C-test.

How this information could be used to make placement or

screening decisions is hopefully becoming apparent. If a

Korean program knows that students in their fourth year

of study typically score between 1–5 on the logit scale (on

the left), then an incoming student who takes the Korean

C-test and receives a logit score of 3 could reasonably be

66

placed in level 4, all things being equal. Likewise, an

incoming student who receives a logit score of -1.5 would

most likely be a candidate for first-year Korean, and so

on.

Although we used the variable map and knowledge of

students’ institutional level to better understand the

predictive validity of the Korean C-test, you could also

plug self-assessment ratings beneath the “! Person Label

Variables” line when setting up the control file to better

understand the concurrent validity of your C-test. Those

with higher self-assessment ratings, ideally, would be

towards the top of the Wright map, while those with lower

ratings would be towards the bottom.

231. Summary

That’s it, folks! We have covered a lot of information in this guide; hopefully, you’ll find the information

helpful as you learn to analyze your own C-test data. With what you know about Rasch analysis and the

Ministep software, you should be in a good position to understand what most of the output means and to

reduce your own set of C-test texts from 10 (or however many you have to begin with) to 5.

We used the Bangla C-test data for this example, mainly because this is a data set we’re familiar with;

we know what the data look like, and we also are keenly aware of how C-tests were administered, who

the test takers are, and what the individual texts are. The Bangla C-test data set, however, definitely has

some shortcomings; the Bangla proficiency of learners is overall at the low end of the spectrum, there

were few test takers overall (we commented a number of times on the small test-taker sample size), and

we had a lot of heritage language learners. We can’t emphasize enough that, regardless of the analysis

being performed on the data, text selection and performance should be continuously monitored.

We also analyzed data using the rating-scale model, but we would encourage you to consider several

different points of consideration when choosing between rating-scale and partial credit models to analyze

your data. You should consider the following:

• The audience to whom you will need to communicate findings from your C-test analysis

• The structure of your C-test items, and how the structure is affected by the test-taker sample size

• The usefulness of the analysis

This last point is particularly poignant. In our experience, in most cases analyzing C-test data with rating-

scale and partial credit models yields separation values that are sufficient for placement or screening

purposes, or to get a quick-and-dirty ‘snapshot’ of test takers’ proficiency levels. When all is said and

done, Rasch analysis should be useful for you and your development team. If one model is more useful

than the other, even though there might be small differences in person separation, use the more useful

set of findings.

