

AvesTerra™
A Framework for Global-Scale Knowledge Orchestration

Hypergraph Transfer Protocol (HGTP)
Version 3.5
April 2023	

V3.5 – April 2023
Georgetown University © 2023

ii V3.5 – April 2023
Georgetown University © 2023

Table	of	Contents	
Preface ... iii	

Acknowledgement ... iv	

Summary of Changes .. 1	

Introduction ... 2	
Protocol Overview .. 3	

Field Specifications ... 5	
Message Parameters .. 5	
Command Codes .. 6	
Report Codes .. 7	
Error Codes ... 8	

HGTP Development ... 10	

iii V3.5 – April 2023
Georgetown University © 2023

Preface	

This document is the second in a series of companion documents that collectively describe the
AvesTerra system for global-scale knowledge orchestration and analytic interoperability. The
list of key AvesTerra documents include:

 - AvesTerra: FOUR-Color Framework

The FOUR-Color Framework document provides an overview of the original principles
and architectural aspects of AvesTerra’s approach to knowledge sharing and analytic
interoperability, including a description of the end-to-end system structure and each of
the main four layers of the design. AvesTerra is the first major effort to make use of the
full spectrum of FOUR-Color architectural principles.

 - AvesTerra: Hypergraph Transaction Protocol (HGTP)

The HGTP document (presented here) provides a specification of the communication
protocol used for all AvesTerra interactions including between AvesTerra clients and
AvesTerra servers, and between AvesTerra servers with their peers.

- AvesTerra: Application Programming Interface (API)

The API document describes the application programming interface constructs of the
AvesTerra system. This interface is intended for systems level developers needing to
interact with AvesTerra servers at the core level.

- AvesTerra: Integration and Application Library (Avial)

The Avial document provides the definition and technical details of the layer of
standardized integration and application services built directly atop the AvesTerra API.
This document is intended for developers integrating new data sources, adapters,
analytics, tools, and application components into the AvesTerra ecosystem.

iv V3.5 – April 2023
Georgetown University © 2023

Acknowledgement	

This paper is a result of lengthy technical conversations with an extraordinary community of
researchers, analysts, and computational science talent spanning the Nation over the past two decades.
Special thanks to the original contributors including Lawrence Livermore National Laboratory, Oak Ridge
National Laboratory, Pacific Northwest National Laboratory, and the Raytheon Company for their
intellectual contributions to this effort, and to the Defense Advanced Research Projects Agency (DARPA)
for their sponsorship of this work under the SIMPLEX program via contract #N66001-15-C-4044. The
views contained within are solely those of the author and do not necessarily reflect the opinions or
positions of Georgetown University or any collaborator or sponsor organization involved.

For additional information, contact:

J. C. Smart, Ph.D.
AvesTerra Chief Scientist
Research Professor
Department of Computer Science
Office of the Senior Vice President for Research
Georgetown University
37th and O Street, NW
Washington, D.C. 20057-1241
smart@georgetown.edu
(443) 745-5876

1 V3.5 – April 2023
Georgetown University © 2023

Summary	of	Changes	

Version 1.0 – Initial Release. [June 2016]

Version 2.0 – Conversion to 1280-byte binary message frame

Version 3.0 – Conversion to TLS encrypted 1024-byte message frame

Version 3.1 – Fields renamed (class, category, context, resultant)

Version 3.2 – instance field reduced to 32 bits; 32-bit offset field added.

Version 3.3 – value field renamed bytes

Version 3.4 – Added SHUTDOWN_ERROR code in support of remote server/adapter termination

Version 3.5 – Added TUNNEL_COMMAND code in support of HGTP tunneling. BYE_COMMAND code
change (no longer defaults to 0). NULL_COMMAND code added (i.e. 0). ADDRESS_REPORT code added
(i.e. 40)

2 V3.5 – April 2023
Georgetown University © 2023

Introduction	

This document provides a specification for the AvesTerra Hypergraph Transaction Protocol
(HGTP). The AvesTerra Application Programming Interface (API) services (described in a
companion document) are layered upon this protocol. In AvesTerra (beginning with Version 2),
HGTP is used for all communication between AvesTerra clients and AvesTerra servers, and
between AvesTerra servers and other peer AvesTerra servers. Client applications typically need
not interact directly with AvesTerra servers at the HGTP level. Instead, clients communicate
using an AvesTerra API programming language binding which performs the appropriate HGTP
transactions on their behalf.

AvesTerra uses a peer-to-peer server style infrastructure to create a distributed knowledge
representation space. Client applications need only communicate with one of the servers in
this infrastructure (e.g. a server running on the local computer or perhaps elsewhere on the
local area network). When a client makes an entity request (e.g. via an API call), the server that
receives the request determines if it is the server that manages the specified entity. This is
performed by examining the entity’s unique identifier (EUID) which internally encodes the
network and host addresses of the entity’s server of record. If the entity is managed by the
receiving server, then this server fulfills the request, sending back an appropriate response to
the client. However, if the entity is managed elsewhere, then the server forwards the request
to a peer AvesTerra server, as determined by its routing algorithm, to help the request reach
the necessary final destination server. When the server forwards this request to the peer
server, it again uses HGTP to communicate. However, the server then behaves as a client to the
peer server.

Figure 1. AvesTerra Peer-to-Peer Architecture

3 V3.5 – April 2023
Georgetown University © 2023

Protocol Overview
HGTP (Version 3 series) uses a fixed-length standard binary message frame with an optional
variable-length extension block for all Internet communications (Figure 2). All messages are
sent using the Transmission Control Protocol (TCP) with Transport Layer Security (TLS)
encryption. All socket communication is through TCP port 20057 (IANA approved). Character
encodings within message frames conform to the American Standard Code for Information
Interchange (US-ASCII), or the more general Unicode Transformation Format with 8-bit variable
width encoding (UTF-8). Numeric values are transmitted in network byte order (i.e. “Big-
Endian”).

Figure 2. Standard HGTP Message Frame

4 V3.5 – April 2023
Georgetown University © 2023

As described in the API, the primary objects manipulated via this protocol are AvesTerra
“entities”, the fundamental construct of an AvesTerra knowledge space. These entities are
representations of knowledge items governed either implicitly or explicitly an ontology.
Ontology related notions are outside of the scope of this protocol. That is, all ontology
references occur at the Avial or higher application level in order to preserve HGTP’s ontological
neutrality.

HGTP typically follows a simple command/response message model. A client application makes
a request by sending a message to a server. The server performs the operation, if possible,
sending a return message with an acknowledgement and any result. If the server is unable to
perform the operation, an error message is returned instead. A single request made to a
server, however, may initiate other messages to potentially other servers and clients. The
INVOKE and INQUIRE request are two key operations where this frequently occurs. Invoking an
entity method, or inquiring an entity attribute results in the server forwarding a CALL request to
the appropriate adapter that is connected or attached, respectively. Similarly, publication of an
entity event results in a NOTIFY request being forwarded to the appropriate subscriber(s).

The first field of every message transmitted by a client is the HGTP command code. This code
indicates the specific type of transaction being requested and determines how fields present in
the remainder of the message are to be interpreted. The 8-byte extension field is used to
specify any additional data bytes transmitted after the fixed 1024-byte block. The extension
bytes are typically used when transmitting values that exceed the limits of the 255-byte value
field.

In total, HGTP contains 59 different message types, in close alignment with the API
specification. A typical message exchange involves a client opening a socket connection to an
AvesTerra server listening on port 20057. The client sends the properly formatted message
frame, any optional extension bytes, and then awaits a return response. Success is indicated by
a null error field (i.e. 0) in the returned message. When the error code is not null, an optional
error message may be passed via the value field.

Implementation Notes
To minimize the burden on the host operating system’s networking subsystem, an AvesTerra
API implementation may choose to leave the socket open for subsequent reuse in the event of
another client request to the same server. A timer (e.g. 1-2 minutes) is generally affixed to this
socket to ensure eventual closing of any dormant connections. Upon expiration of this timer,
the BYE message is sent by a client to notify the server of an orderly socket shutdown. A client
and/or a server may each also choose to unilaterally shutdown a connection in the event of
application termination or an unrecoverable error condition (e.g. host shutdown, network
disruption, etc). The definition of each HGTP message field is described in the following
section.

5 V3.5 – April 2023
Georgetown University © 2023

Field	Specifications	

Each of the message fields identified above in the HGTP message frame (figure 2) are specified
in this section. Message fields include message parameters, message codes, report codes,
response codes, errors, and termination code.

Message Parameters
The following message parameters are defined:

 (command) 16-bit command code, enumerated below
 (error) 16-bit error code, enumerated below
 (version) 16-bit version code, for version management/compatibilit
 (report) 16-bit report code, enumerated below
 (method) 16-bit method code, enumerated by Method Taxonomy
 (attribute) 16-bit attribute code, enumerated by Attribute Taxonomy
 (event) 16-bit event code, enumerated by Event Taxonomy
 (mode) 16-bit mode code, enumerated by Mode Taxonomy
 (category) 16-bit category code, enumerated by Category Taxonomy
 (class) 16-bit class code, enumerated by Class Taxonomy
 (context) 16-bit context code, enumerated by Context Taxonomy
 (aspect) 16-bit aspect code, enumerated by Aspect Taxonomy
 (state) 16-bit state code, enumerated by State Taxonomy
 (precedence) 16 bit unsigned integer determining INVOKE/INQUIRE precedence
 (tag) 16-bit tag code, enumerated by Tag Taxonomy
 (condition) 16-bit condition, enumerated by Condition Taxonomy
 (instance) 32-bit unsigned integer for attribute instance support
 (offset) 32-bit unsigned integer for index offsetting
 (time) 64-bit time (Unix EPOCH time)
 (index) 64-bit unsigned integer for aspect indexing
 (count) 64-bit unsigned integer for aspect counting
 (extension) 64-bit unsigned extension byte count
 (parameter) 64-bit integer for parameter passing
 (resultant) 64-bit integer for resulting return
 (timeout) 64-bit unsigned integer timeout (typically in seconds)

<entity> AvesTerra entity identifier of the form “<NID|HID|UID>” where PID is a
32-bit unsigned integer for the public (wide-area) network identifier;
HID is a 32-bit unsigned integer for the private (local area) host
identifier; UID is a 64-bit unsigned integer for entity’s unique identifier.

<outlet> Outlet entity identifier
<auxiliary> Auxiliary entity identifier
<ancillary> Ancillary entity identifier
{authorization} 128-bit authorization code
{authority} 128-bit authority code
(name count) 8-bit name field byte count
“name” 255 8-bit byte name field
(key count) 8-bit key field byte count

6 V3.5 – April 2023
Georgetown University © 2023

 “key” 255 8-bit byte name field
(bytes count) 8-bit bytes field byte count
(bytes) 255 8-bit byte bytes field.
[bytes extension] Optional extension bytes; used if bytes field is not sufficient for value

transmission

Command Codes
Each client HGTP message begins with an unsigned integer command code. The following
command codes are currently defined:

Command Code Code Value
(NULL_COMMAND) 0
(create_COMMAND) 1
(delete_COMMAND) 2
(connect_COMMAND) 3
(disconnect_COMMAND) 4
(attach_COMMAND) 5
(detach_COMMAND) 6
(invoke_COMMAND) 7
(inquire_COMMAND) 8
(call_COMMAND) 9
(adapt_COMMAND) 10
(reset_COMMAND) 11
(connection_COMMAND) 12
(attachment_COMMAND) 13
(reference_COMMAND) 14
(dereference_COMMAND) 15
(activate_COMMAND) 16
(deactivate_COMMAND) 17
(publish_COMMAND) 18
(subscribe_COMMAND) 19
(notify_COMMAND) 20
(cancel_COMMAND) 21
(subscription_COMMAND) 22
(wait_COMMAND) 23
(flush_COMMAND) 24
(attached_COMMAND) 25
(connected_COMMAND) 26
(subscribed_COMMAND) 27
(authorize_COMMAND) 28
(deauthorize_COMMAND) 29
(authorized_COMMAND) 30
(authorization_COMMAND) 31

7 V3.5 – April 2023
Georgetown University © 2023

(report_COMMAND) 32
(lock_COMMAND) ` 33
(unlock_COMMAND) 34
(change_COMMAND) 35
(insert_COMMAND) 36
(remove_COMMAND) 37
(replace_COMMAND) 38
(erase_COMMAND) 39
(find_COMMAND) 40
(element_COMMAND) 41
(length_COMMAND) 42
(arm_COMMAND) 43
(disarm_COMMAND) 44
(start_COMMAND) 45
(stop_COMMAND) 46
(reset_COMMAND) 47
(fetch_COMMAND) 48
(set_COMMAND) 49
(clear_COMMAND) 50
(test_COMMAND) 51
(execute_COMMAND) 52
(halt_COMMAND) 53
(schedule_COMMAND) 54
(redirect_COMMAND) 55
(condition_COMMAND) 56
(tunnel_COMMAND) 57

 (bye_COMMAND) 58

Report Codes
Each client HGTP REPORT message includes a report code that identifies the specific report
being requested. The following report codes are currently defined:

Report Code Code Value
(NULL_REPORT) 0
(AVAILABLE_REPORT) 1
(NAME_REPORT) 2
(CATEGORY_REPORT) 3
(CLASS_REPORT) 4
(ACTIVATED_REPORT) 5
(CONNETIONS_REPORT) 6
(ATTACHMENTS_REPORT) 7
(SUBSCRIPTIONS_REPORT) 8
(AUTHORITIES_REPORT_) 9

8 V3.5 – April 2023
Georgetown University © 2023

(REDIRECTION_REPORT) 10
(REFERENCES_REPORT) 11
(TIMESTAMP_REPORT) 12
(SERVER_REPORT) 13
(LOCAL_REPORT) 14
(GATEWAY_REPORT) 15
(HOSTNAME_REPORT) 16
(VERSION_REPORT) 17
(EXTINCT_REPORT) 18
(PENDING_REPORT) 19
(LOCKED_REPORT) 20
(RENDEZVOUS_REPORT) 21
(STATUS_REPORT) 22
(CONTEXT_REPORT) 23
(CLOCK_REPORT) 24
(TIMER_REPORT) 25
(ELAPSED_REPORT) 26
(ARMED_REPORT) 27
(ACTIVE_REPORT) 28
(STATE_REPORT) 29
(CONDITIONS_REPORT) 30
(ELEMENTS_REPORT) 31
(KEY_REPORT) 32
(BUSY_REPORT) 33
(BLOCKING_REPORT) 34
(WAITING_REPORT) 35
(ADAPTING_REPORT) 36
(INVOKING_REPORT) 37
(INTERNET_REPORT) 38
(AUTHORITY)_REPORT) 39
(ADDRESS_REPORT) 40

Error Codes
A response message is returned for every HGTP message request. Each response message
contains an error code. The following error codes are currently defined:

Response Code Code Value
(NULL_ERROR) 0
(AVESTERRA_ERROR) 1
(ENTITY_ERROR) 2
(OUTLET_ERROR) 3
(NETWORK_ERROR) 4
(TIMEOUT_ERROR) 5

9 V3.5 – April 2023
Georgetown University © 2023

(AUTHORIZATION_ERROR) 6
(ADPATER_ERROR) 7
(SUBSCRIBER_ERROR) 8
(APPLICATION_ERROR) 9
(BYPASS_ERROR) 10
(FORWARD_ERROR) 11
(VALUE_ERROR) 12
(MESSAGE_ERROR) 13
(EXECUTION_ERROR) 14
(SHUTDOWN_ERROR) 15

	
With each non-null error code, an optional error message string can be passed via the bytes
and byte count fields.

10 V3.5 – April 2023
Georgetown University © 2023

HGTP	Development	

The development of HGTP has been an ongoing research and development activity at
Georgetown University, designed and implemented with support from DARPA under contract
for the SIMPLEX and AIDA programs. The HGTP protocol is currently in widespread operation
throughout all AvesTerra system deployments including its ATra configurations. The protocol
was approved for Internet use and is listed in the IANA Service Name and Transport Protocol
Port Number Registry as:

 Service Name: avesterra
 Port Number: 20057

Transport protocol tcp
 Description: AvesTerra Hypergraph Transfer Protocol (HGTP)
 Assignee: Georgetown University
 Contact: J. C. Smart
 Registration date: 2016-06-06

HGTP V1.0 marked the completion of the protocol’s first major version, providing support for all
of AvesTerra’s original API transactions. The HGTP V1 series used a simple text-based message
exchange and was extended numerous times to accommodate enhancements to the AvesTerra
API. HGTP V2.0 replaced the cumbersome and problematic text-based format with a fixed
binary message frame. This enabled a dramatic simplification to the API with improved
performance and reliability. In addition, it enabled transactions to potentially be examined at
line rate to filter across select isolation boundaries based on a mask of the command, category,
class, context, method, attribute, condition, state, aspect, and error fields. The ability to
design and verify such isolators using formal method techniques has been demonstrated via a
Georgetown research collaborator. HGTP V3.0 incorporated full TLS encryption, with
subsequent revisions made to incorporate numerous server operations and upper-level Avial
functions such as remote systems management and tunneling.	

